Tensor calculus with Lorene

Eric Gourgoulhon

Laboratoire de l’Univers et de ses Théories (LUTH)
CNRS / Observatoire de Paris
F-92195 Meudon, France
eric.gourgoulhon@obspm.fr

based on a collaboration with
Philippe Grandclément & Jérôme Novak

School on spectral methods:
Application to General Relativity and Field Theory
Meudon, 14-18 November 2005
http://www.lorene.obspm.fr/school/
Tensor calculus on a 3-dimensional manifold only (3+1 formalism of general relativity)

Main class: Tensor : stores tensor components with respect to a given triad and not abstract tensors

Different metrics can be used at the same time (class Metric), with their associated covariant derivatives

Covariant derivatives can be defined irrespectively of any metric (class Connection)

Dynamical gestion of dependencies guaranties that all quantities are up to date, being recomputed only if necessary
Class **Base_vect** (triads)

The triads are described by the **LORENE** class: **Base_vect**; most of the time, orthonormal triads are used. Two triads are naturally provided, in relation to the coordinates \((r, \theta, \varphi)\) (described by the class **Map**):

- \((e_x, e_y, e_z) = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right)\) (class **Base_vect_cart**)

- \((e_r, e_\theta, e_\varphi) = \left(\frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \theta}, \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} \right)\) (class **Base_vect_spher**)

Notice that both triads are orthonormal with respect to the flat metric metric \(f_{ij} = \text{diag}(1, 1, 1)\).

Given a coordinate system, described by a mapping (class **Map**), they are obtainable respectively by the methods

- **Map::get_bvect_cart()**
- **Map::get_bvect_spher()**
Conventions: the indices of the tensor components, vary between 1 and 3. In the example T^{i}_{jk}, the first index i is called index no. 0, the second index j is called index no. 1, etc...

The covariance type of the indices is indicated by an integer which takes two values, defined in file tensor.h:

- **COV**: covariant index
- **CON**: contravariant index

The covariance types are stored in an array of integers (**LORENE class Itbl**) of size the tensor valence. For T^{i}_{jk}, the **Itbl**, **tipe** say, has a size of 3 and is such that

- **tipe(0) = CON**
- **tipe(1) = COV**
- **tipe(2) = COV**
This code is available as
Lorene/School05/Wednesday/demo_tensor.C
in the LORENE distribution

// C headers
#include <stdlib.h>
#include <assert.h>
#include <math.h>

// Lorene headers
#include "headcpp.h" // standard input/output C++ headers
// (iostream, fstream)
#include "metric.h" // classes Metric, Tensor, etc...
#include "nbr_spx.h" // defines __infinity as an ordinary number
#include "graphique.h" // for graphical outputs
#include "utilitaires.h" // utilities

int main() {

// Setup of a multi-domain grid (Lorene class Mg3d)
// ---
int nz = 3 ; // Number of domains
int nr = 17 ; // Number of collocation points in r in each domain
int nt = 9 ; // Number of collocation points in theta in each domain
int np = 8 ; // Number of collocation points in phi in each domain
int symmetry_theta = SYM ; // symmetry with respect to the
// equatorial plane
int symmetry_phi = NONSYM ; // no symmetry in phi
bool compact = true ; // external domain is compactified

// Multi-domain grid construction:
Mg3d mgrid(nz, nr, nt, np, symmetry_theta, symmetry_phi,
compact) ;

cout << mgrid << endl ;
// Setup of an affine mapping : grid --> physical space
// (Lorene class Map_af)
//---

// radial boundaries of each domain:
double r_limits[] = {0., 1., 2., __infinity} ;

Map_af map(mgrid, r_limits) ; // Mapping construction

cout << map << endl ;

// Coordinates associated with the mapping:

const Coord& r = map.r ;
const Coord& x = map.x ;
const Coord& y = map.y ;
Scalar psi4(map);

psi4 = 1 + 5*x*y*exp(-r*r);

psi4.set_outer_boundary(nz-1, 1.); // 1 at spatial infinity
 // (instead of NaN !)

psi4.std_spectral_base(); // Standard polynomial bases
 // will be used to perform the
 // spectral expansions
// Graphical outputs:
// -----------------

// 1D view via PGPlOT
des_profile(psi4, 0., 4., 1, M_PI/4, M_PI/4, "r", "\\gq\u4") ;

// 2D view of the slice z=0 via PGPlOT
des_coupe_z(psi4, 0., -3., 3., -3., 3., "\\gq\u4") ;

// 3D view of the same slice via OpenDX
psi4.visu_section(’z’, 0., -3., 3., -3., 3.) ;

cout << "Coefficients of the spectral expansion of Psi^4:" << endl ;
cout << endl ;
psi4.spectral_display() ;
arrete() ; // pause (waiting for return)
Components of the flat metric in an orthonormal spherical frame:

```cpp
Sym_tensor fij(map, COV, map.get_bvect_spher());
fij.set(1,1) = 1;
fij.set(1,2) = 0;
fij.set(1,3) = 0;
fij.set(2,2) = 1;
fij.set(2,3) = 0;
fij.set(3,3) = 1;

fij.std_spectral_base(); // Standard polynomial bases will be used to perform the spectral expansions
```

Components of the physical metric in an orthonormal spherical frame:

```cpp
Sym_tensor gij = psi4 * fij;
```
// Construction of the metric from the covariant components:
Metric gam(gij) ;

// Construction of a Vector : $V^i = D^i \Psi^4 = (\Psi^4)^{;i}$
Vector vv = psi4.derive_con(gam) ; // this is spherical comp.
// (same triad as gam)

vv.dec_dzpuis(2) ; // the dzpuis flag (power of r in the CED)
// is set to 0 (= 2 - 2)

// Cartesian components of the vector :
Vector vv_cart = vv ;
vv_cart.change_triad(map.get_bvect_cart()) ;

// Plot of the vector field :

des_coupe_vec_z(vv_cart, 0., -4., 1., -2., 2., -2., 2., 2., "Vector V") ;
// A symmetric tensor of valence 2: the Ricci tensor
// associated with the metric gam:
//--

Sym_tensor tens1 = gam.ricci() ;

const Sym_tensor& tens2 = gam.ricci() ; // same as before except
 // that no memory is allocated for a
 // new tensor: tens2 is merely a
 // non-modifiable reference to the
 // Ricci tensor of gam

// Plot of tens1

des_meridian(tens1, 0., 4.,"Ricci (x r\u3\d in last domain)",10) ;
// Another valence 2 tensor: the covariant derivative of V
// with respect to the metric gam:
//---
Tensor tens3 = vv.derive_c cov(gam);

const Tensor& tens4 = vv.derive_c cov(gam);

// the reference tens4 is preferable over the new object tens3
// if you do not intend to modify tens4 or vv, because it does
// not perform any memory allocation for a tensor.

// Raising an index with the metric gam:

Tensor tens5 = tens3.up(1, gam); // 1 = second index (index j
 // in the covariant derivative V^i_{;j})

Tensor diff1 = tens5 - vv.derive_con(gam); // this should be 0

// Check:
cout << "Maximum value of diff1 in each domain: " << endl;
Tbl tdiff1 = max(diff1);
// Another valence 2 tensor : the Lie derivative
// of R_{ij} along V :

Sym_tensor tens6 = tens1.derive_lie(vv) ;

// Contracting two tensors :

Tensor tens7 = contract(tens1, 1, tens5, 0) ; // contracting
 // the last index of tens1 with the
 // first one of tens5

// self contraction of a tensor :

Scalar scal1 = contract(tens3, 0, 1) ; // 0 = first index,
 // 1 = second index
// Each of these fields should be zero:

Scalar diff2 = scal1 - vv.divergence(gam); // divergence

Scalar diff3 = scal1 - tens3.trace(); // trace

// Check:
cout << "Maximum value of diff2 in each domain : "
 << max(abs(diff2)) << endl;

cout << "Maximum value of diff3 in each domain : "
 << max(abs(diff3)) << endl;

arrete();
// Tensorial product :

Tensor_sym tens8 = tens1 * tens3 ; // tens1 = R_{ij}
 // tens3 = V^k_{;l}
 // tens8
 // = (T8)_{ij}^k_{;l}
 // = R_{ij} V^k_{;l}

cout << "Valence of tens8 : " << tens8.get_valence()
 << endl ;

cout << "Spectral coefficients of the component (2,3,1,1) of tens8:"
 << endl ;

tens8(2,3,1,1).spectral_display() ;
To see more functions, please have a look to Lorene documentation at http://www.lorene.obspm.fr/Refguide/

return EXIT_SUCCESS ;