Multimessenger constraints on the origin of ultra-high-energy cosmic-rays

Denis Allard in collaboration with Noemie Globus, E. Parizot, T. Piran, G. Decerprit, R. Mochkovitch et al.
The cosmic-ray spectrum
(a wonder of high-energy astrophysics)

Spectrum measured on 12 orders of magnitude in energy and 32 in flux

- At low energy ($<10^{13-14}$ eV) the fluxes are large
 -> domain of satellite and atmospheric balloons

- At high energies (low fluxes) one uses air shower properties to detect cosmic-ray
 -> domain of air shower arrays and fluorescence detector

- At the highest energies ($\sim 10^{20}$ eV), extremely low fluxes (<1 CR.km$^{-2}$.century$^{-1}$)
 -> domain of giant air shower detectors

NB: these particles are simply the most energetic particles known to exist in the universe
The cosmic-ray spectrum
(a wonder of high-energy astrophysics)

Spectrum measured on 12 orders of magnitude in energy and 32 in flux

- At low energy (<10^{13-14} eV) the fluxes are large
 -> domain of satellite and atmospheric balloons

- At high energies (low fluxes) one uses air shower properties to detect cosmic-ray
 -> domain of air shower arrays and fluorescence detector

- At the highest energies (~10^{20} eV), extremely low fluxes (<1 CR.km$^{-2}$.century$^{-1}$)
 -> domain of giant air shower detectors

NB: these particles are simply the most energetic particles known to exist in the universe

We know cosmic-rays are accelerated in astrophysical sources but we do not know much more about their origin (long standing question for high-energy astrophysics)
3 key observables to understand the origin of cosmic-rays

1. Angular spectrum
 - Arrival directions

2. Energy spectrum
 - Flux as a function of the energy

3. Mass spectrum
 - composition
Above $\sim 10^{14}$ eV, fluxes are too low for satellites and balloons detection.

Ground based observatory detect atmospheric air showers.

Principle: detect secondary particles in order to reconstruct the properties of the primary cosmic-ray.

Mainly two detection methods:

- Ground arrays
- Fluorescence telescope

KASCADE (Germany; $\sim 10^{15}$ to 10^{18} eV) and Auger (Argentina; $>10^{17}$ eV) are two examples of ground based cosmic-ray observatories.
Detection of VHE and UHE cosmic-rays

Above $\sim 10^{14}$ eV, fluxes are too low for satellites and balloons detection

Ground based observatory detect atmospheric air showers

Principle: detect secondary particles in order to reconstruct the properties of the primary cosmic-ray

Mainly two detection methods:

- Ground arrays
- Fluorescence telescope

Energy and direction reconstruction of the primary cosmic-ray is well mastered

The composition cannot be reconstructed on an event by event basis (unlike with balloons and satellites)

The best that can be done for CR composition is to separate large datasets into light/intermediate/heavy CR components
Three major features in the VHE and UHE cosmic-ray spectrum:

- The knee and the ankle (known for a long time)
- A high energy cut-off (established only a few years ago)
The knee first seen in the late 50’s very soon suspected to be an inflection of the light galactic component

One of the most popular physical explanation of the knee: maximum energy of Galactic accelerators is reached

==> knees of the different species expected at energies proportional to their charge

(other explanations with similar implications for the composition exist)

==> composition getting heavier in the energy decade following the knee confirmed by most experiments

==> knee of the heavy elements at ~10^{17} eV observed as expected by the Kascade-Grande experiment (compatible with an energy 26 time higher than the “proton” knee)

The ankle

The knee first seen in the late 50's very soon suspected to be an inflection of the light galactic component.

ankle: transition from a softer to a harder component

==> very natural feature for the transition from galactic to extragalactic cosmic-ray
The ankle

The knee first seen in the late 50's very soon suspected to be an inflection of the light galactic component

Why should the component taking over be extragalactic?
Several argument are usually invoked:
- No galactic accelerator expected to be powerful enough to reach the highest energies
- Anisotropies in the direction of the galactic disk would be naively expected

➡ Strong belief that the highest energy cosmic-ray are of extragalactic origin but there is no definitive proof of it
➡ we will assume the UHECR are extragalactic in the following

ankle: transition from a softer to a harder component

==> very natural feature for the transition from galactic to extragalactic cosmic-ray
The ankle

The knee first seen in the late 50’s very soon suspected to be an inflection of the light galactic component

Galactic sources:
Galactic cosmic-ray origin probably related to the end of the life or the explosion of massive stars (stellar winds, supernova remnants, superbubbles, pulsars)
Galactic center?

Extragalactic sources:
AGNs, GRBs, galaxy clusters, young neutron stars which are “on top” of the Hillas diagram often mentioned
A consistent picture of the transition from galactic to extragalactic cosmic-rays?

Tantalizing picture! What UHECR data (Auger) have to say about it? Can we bring additional constraints with other messengers (photons, neutrinos)

Denis Allard - Séminaires du LUTH - 14/02/2019 - Observatoire de Paris (Meudon)
3 key observables to understand the origin of cosmic-rays

1. Angular spectrum
 - Arrival directions

2. Energy spectrum
 - Flux as a function of the energy

3. Mass spectrum
 - Composition
4 key observables to understand the origin of cosmic-rays

1. Angular spectrum
 Arrival directions

2. Energy spectrum
 Flux as a function of the energy

3. Mass spectrum
 Composition

4. Multi-messenger counterparts
 Cosmogenic γ and ν
4 key observables to understand the origin of cosmic-rays

1. Angular spectrum
 - Arrival directions

2. Energy spectrum
 - Flux as a function of the energy

3. Mass spectrum
 - Composition

4. Multi-messenger counterparts
 - Cosmogenic γ and ν

We are going to consider not only Auger data (UHECR) but also Fermi (γ-ray) and IceCube (neutrino) data.
Ultra-high-energy cosmic-rays (UHECR), neutrinos and photons: the multi-messenger link

UHECR ($E > 10^{17} \text{ eV}$) are strongly suspected to be of extragalactic origin. Extragalactic ultra-high-energy cosmic-rays must lose energy and produce secondary (cosmogenic) neutrinos and gamma-rays during their propagation interacting with the extragalactic background light (UV-optical-IR, CMB).

- Pair production: $N + \gamma \rightarrow N + e^+/e^-$
 - Threshold with CMB photons: $\sim 10^{18} \text{ eV per nucleon (at } z=0)$

- Pion and meson production:
 - $\pi^0 \rightarrow 2\gamma$
 - $\pi^+ \rightarrow \mu^+ + \nu_\mu, \mu^+ \rightarrow \nu_\mu + e^+ + \nu_e$ => secondary e^+/e^-, γ and ν
 - Threshold with CMB photons: $\sim 10^{20} \text{ eV per nucleon (at } z=0)$

Mechanism responsible for the GZK cut-off at least for UHECR protons.
Ultra-high-energy cosmic-rays (UHECR), neutrinos and photons: the multi-messenger link

UHECR ($E > 10^{17}$ eV) are strongly suspected to be of extragalactic origin
Extragalactic ultra-high-energy cosmic-rays must lose energy and produce secondary (cosmogenic) neutrinos and gamma-rays during their propagation interacting with the extragalactic background light (UV-optical-IR, CMB)

- pair production: $N + \gamma \rightarrow N + e^+ / e^-$
- Pion and meson production:
 \[
 \pi^0 \rightarrow 2\gamma \\
 \pi^+ \rightarrow \mu^+ + \nu_\mu, \mu^+ \rightarrow \bar{\nu}_\mu + e^+ + \nu_e \\
 \pi^- \rightarrow \mu^- + \bar{\nu}_\mu, \mu^- \rightarrow \nu_\mu + e^- + \bar{\nu}_e
 \]

νs do not interact while propagating in the extragalactic medium while the universe is opaque to VHE e^+/e^- and γ which cascade down to sub-TeV energies

Diffuse UHECR ($E > 10^{17}$ eV) flux
- diffuse ν flux in the PeV-EeV range
- diffuse γ-ray flux in the GeV-TeV range

Denis Allard - Séminaires du LUTH - 14/02/2019 - Observatoire de Paris (Meudon)
Ultra-high-energy cosmic-rays (UHECR), neutrinos and photons: the multi-messenger link

UHECR (E>10^{17} eV) are strongly suspected to be of extragalactic origin. Extragalactic ultra-high-energy cosmic-rays must lose energy and produce secondary (cosmogenic) neutrinos and gamma-rays during their propagation interacting with the extragalactic background light (UV-optical-IR, CMB).

- Pair production: N+γ→N+e^+/e^− \Rightarrow \text{secondary } e^+/e^−.

- Pion and meson production:
 \begin{align*}
 \pi^0 &\rightarrow 2\gamma \\
 \pi^+ &\rightarrow \mu^+ + \nu_\mu, \ \mu^+ \rightarrow \bar{\nu}_\mu + e^+ + \nu_e \Rightarrow \text{secondary } e^+/e^−, \gamma \text{ and } \nu \\
 \pi^- &\rightarrow \mu^- + \bar{\nu}_\mu, \ \mu^- \rightarrow \nu_\mu + e^- + \bar{\nu}_e
 \end{align*}

The extragalactic photon backgrounds evolve with time, they are hotter and denser as the redshift increases. Cosmological evolution of the sources is expected to have a strong impact on cosmogenic photons and neutrino fluxes.

4 different hypotheses on the source evolution in the following:
- A very strong evolution such as that of very luminous AGNs (hereafter labeled FR-II)
- 2 “intermediate” evolutions following the “star formation rate” (SFR) and the evolution of GRB sources
- A baseline case with no evolution (often labeled “uniform”)
Calculations of cosmogenic neutrino and photon fluxes what do we do?

We assume a given extragalactic UHECR phenomenological model which relies on:
• source spectrum (usually a power law)
• source composition
• maximum energy at the sources
• cosmological evolution of the sources (distribution of initial redshifts)

Particles propagation from the sources to the Earth is simulated (energy losses, secondary particles productions)

A “good” model should reproduce the measured UHECR spectrum

⇒ normalisation for the secondary ν and γ fluxes
⇒ νs and γs must not overshoot IceCube UHEν sensitivity and Fermi-LAT isotropic gamma-ray background (IGRB)

NB: it should also reproduce the observed UHECR composition
One example: mixed composition assumed at UHECR sources

Assuming the maximum energy per nucleon is above 10^{20} eV (what most people thought until ~2010),
mixed composition similar to that of low energy galactic cosmic-rays:

$$N(E) \propto E^{-\beta}, \quad E_{\text{max}}(Z) = Z \times E_{\text{max}}^{\text{proton}}, \quad E_{\text{max}}^{\text{proton}} = 10^{20.5} \text{ eV}$$

The UHECR spectrum can be well reproduced above the ankle

\rightarrow the ankle is interpreted in this case as a signature of the transition between Galactic and extragalactic cosmic-rays (more precisely the end of the transition)

$E^3 \times (\text{diff. flux})$

$E^3 \Phi(E) \text{ (eV}^2\text{m}^2\text{s}^{-1}\text{sr}^{-1})$

$E_{\text{max}} = Z \times 10^{20.5} \text{ eV}$

Ankle of the cosmic-ray spectrum

Predicted suppression above 5×10^{19} eV \rightarrow unrelated to the maximum energy at the sources \rightarrow GZK effect
The GZK effect for protons and nuclei

proton attenuation length as a function of the energy:
Strong decrease above \(\sim 10^{20} \) eV due to pion production with CMB photons
\(\rightarrow \) Horizon of UHE proton gets reduced above this energy
\(\rightarrow \) GZK cut-off for protons

nuclei mean free path for giant dipole resonance (photodisintegration) as a function of the Lorentz factor:
Strong decrease above \(\Gamma \sim 4 \times 10^9 \) due to GDR interaction with CMB photons
\(\rightarrow \) Horizon of UHE nuclei get reduced an energy \(\sim A \times 4 \times 5 \times 10^{18} \) eV
\(\rightarrow \) GZK cut-off for nuclei
One example: mixed composition assumed at UHECR sources

Assuming the maximum energy per nucleon is above 10^{20} eV (what most people thought until ~2010), mixed composition similar to that of low energy galactic cosmic-rays:

$N(E) \propto E^{-\beta}$, \hspace{5pt} $E_{\text{max}}(Z)=Z \times E_{\text{max}}^{\text{proton}}$, \hspace{5pt} $E_{\text{max}}^{\text{proton}}=10^{20.5}$ eV

When all the species are assumed to be accelerated above 10^{20} eV, the composition is expected to get lighter (i.e. proton richer) above 10^{19} eV (photodisintegration of composed species)
One example: mixed composition assumed at UHECR sources

Auger Collaboration 2015 (ICRC)
One example: mixed composition assumed at UHECR sources

Neutrino “bumps” peaking around 10^{18} eV
\rightarrow produced by UHECR $\gg 10^{19}$ eV per nucleon
\rightarrow π-photoproduction on CMB photons

Strong impact of the cosmological evolution of the sources on the cosmogenic ν fluxes
\rightarrow evolutions significantly stronger than SFR constrained by IceCube

Auger Collaboration 2015 (ICRC)
One example: mixed composition assumed at UHECR sources

(i) All the energy released in γ and e^+e^- piles up in the subTeV range

(ii) Strong impact of the cosmological evolution of the sources on the cosmogenic γ fluxes —> strongest evolution also ruled out by Fermi-LAT IGRB

(iii) Subdominant contribution of π-photoproduction to cosmogenic γs —> dominant contribution of the e^+e^- pair production —> unlike cosmogenic νs, cosmogenic γs are not mostly produced by the highest energy particles

(Adapted from Decerprit and Allard, A&A, 2011)

Auger Collaboration 2015 (ICRC)
The evolution of the composition implied by Auger composition analyses strongly suggest that the composition is light at the ankle and becoming heavier as the energy increases.
One example: mixed composition assumed at UHECR sources

Assuming the maximum energy per nucleon is above 10^{20} eV (what most people thought until ~2010), mixed composition similar to that of low energy galactic cosmic-rays:

$$N(E) \propto E^{-\beta}, \quad E_{\text{max}}(Z) = Z \times E_{\text{max}}^{\text{proton}}, \quad E_{\text{max}}^{\text{proton}} = 10^{20.5} \text{ eV}$$

When all the species are assumed to be accelerated above 10^{20} eV, the composition is expected to get lighter (i.e. proton richer) above 10^{19} eV (photodisintegration of composed species)
One example: mixed composition assumed at UHECR sources

Assuming the maximum energy per nucleon is above 10^{20} eV (what most people thought until ~2010), mixed composition similar to that of low energy galactic cosmic-rays:

$$N(E) \propto E^{-\beta}, \quad E_{\text{max}}(Z) = Z \times E_{\text{max}}^{\text{proton}}, \quad E_{\text{max}}^{\text{proton}} = 10^{20.5} \text{ eV}$$

Incompatible with the evolution of the composition suggested by Auger data!

When all the species are assumed to be accelerated above 10^{20} eV, the composition is expected to get lighter (i.e. proton richer) above 10^{19} eV (photodisintegration of composed species).
Implications of Auger composition measurements

The evolution of the composition implied by Auger composition analyses strongly suggest that the composition is light at the ankle and becoming heavier as the energy increases —> dominant sources of UHECR do not accelerate protons to the highest energies

Low maximum energy per nucleon (a few EeV to 10^{19} eV, well below the pion production threshold with CMB photons) and hard source spectral indexes required

here $N(E) \propto E^{-\beta}$, $\beta=1.4$, $E_{\text{max}}(Z)=Z \times E_{\text{max} \text{proton}}$, $E_{\text{max} \text{proton}}=4.10^{18}$ eV

obviously not a good news for UHE cosmogenic neutrinos predictions
KASCADE-Grande’s light ankle, equivalent to the ankle of the cosmic-ray spectrum but for the light component (H-He), around 10^{17} eV

\rightarrow most probably implies that extragalactic light component starts to be significant already at 10^{17} eV

\rightarrow light component quite soft above 10^{17} eV (~2.7)
KASCADE-Grande's light ankle, equivalent to the ankle of the cosmic-ray spectrum but for the light component (H-He), around 10^{17} eV

\rightarrow most probably implies that extragalactic light component starts to be significant already at 10^{17} eV

\rightarrow light component quite soft above 10^{17} eV (~ 2.7)

Difficult to make a consistent picture of the Auger composition + the light ankle with the above phenomenological model

One would need a much softer spectrum for the light nuclei
KASCADE-Grande's light ankle, equivalent to the ankle of the cosmic-ray spectrum but for the light component (H-He), around 10^{17} eV

\rightarrow most probably implies that extragalactic light component starts to be significant already at 10^{17} eV

\rightarrow light component quite soft above 10^{17} eV (~ 2.7)

Difficult to make a consistent picture of the Auger composition + the light ankle with the above phenomenological model

One would need a much softer spectrum for the light nuclei
KASCADE-Grande’s light ankle

Such an extragalactic component cannot account at the same time for the evolution of the composition suggested by Auger data and the light ankle seen by KASCADE-Grande.
Phenomenological model of UHECR acceleration as a solution to the soft proton spectrum issue

Model of UHECR acceleration at GRB internal shocks (Globus et al. 2015) can reproduce UHECR data (Auger spectrum and composition)
- if most of the energy dissipated is communicated to accelerated cosmic-rays
- the composition injected at the shock has ~ 10 times galactic CR metallicity

NB: Spectrum on earth, sum of the contributions of all GRB after propagation in the extragalactic medium

E3×(diff. flux)

Phenomenological model: implications for the GCR to EGCR transition

- Low proton maximum energy
-Composition getting heavier as the energy increases

Model C, isotropic, $B_{\text{ext}} = 0.1$ nG

![Graph showing energy distribution and composition]

Denis Allard - Séminaires du LUTH - 14/02/2019 - Observatoire de Paris (Meudon)
Phenomenological model: implications for the GCR to EGCR transition

Heavier nuclei spectrum:
- Very hard due to the high-pass filter effect of the escape process
- → Hard nuclei spectrum required to fit Auger composition at high energy

low proton maximum energy
- → composition getting heavier as the energy increases

Heavier nuclei spectrum:
- Very hard due to the high-pass filter effect of the escape process
- → Hard nuclei spectrum required to fit Auger composition at high energy
Phenomenological model: implications for the GCR to EGCR transition

Proton spectrum:
- Soft due to the efficient escape of neutrons from the source (secondary neutron from the photodisintegration of nuclei within the source)
 —> Allows the proton component to extend down to the light ankle seen by KASCADE-Grande

Heavier nuclei spectrum:
- Very hard due to the high-pass filter effect of the escape process
 —> Hard nuclei spectrum required to fit Auger composition at high energy

Low proton maximum energy
—> Composition getting heavier as the energy increases

Denis Allard - Séminaires du LUTH - 14/02/2019 - Observatoire de Paris (Meudon)
Phenomenological model: implications for the GCR to EGCR transition

The difference in shape between the proton and nuclei spectra arises from the fact that the source environment is strongly magnetized and harbours dense radiation fields —-> should not be a distinctive feature of GRB sources

We showed that an extragalactic component presenting these spectral features was able to account for the light ankle and the evolution of the composition measured by Auger

The impact is, as expected, very strong on the predicted cosmogenic neutrino fluxes.

Despite the low maximum energy per nucleon, the diffuse γ-ray flux is very similar to that of previous mixed composition case.
Phenomenological model: multi-messenger implications

The impact is, as expected, very strong on the predicted cosmogenic neutrino fluxes.

Despite the low maximum energy per nucleon, the diffuse γ-ray flux is very similar to that of previous mixed composition case.
The impact is, as expected, very strong on the predicted cosmogenic neutrino fluxes.

Despite the low maximum energy per nucleon, the diffuse γ-ray flux is very similar to that of previous mixed composition case.

This scenario looks completely unconstrained from the point of view of cosmogenic neutrinos and photons.

But Fermi-LAT data contain more informations than what we just discussed.
Composition of the extragalactic γ-ray background

Different astrophysical sources are known to contribute to the total γ-ray background and must be accounted for:

- Star forming galaxies estimated from Fermi data by Ackermann et al., 2012
- Misaligned AGNs estimated by Inoue, 2011

The contribution of UHECR must added to those to check whether or not a given UHECR astrophysical model is viable.

We use the UHECR output obtained from our calculations for GRB sources (soft spectrum for protons and hard for composed species) and run our calculation for different hypotheses on the cosmological evolution to see which ones are disfavoured by Fermi data.
Summary plot on the allowed cosmological evolutions

In the 10-50 GeV band, where the UHECR contribution to the EGRB is the largest:

- In the case of our UHECR model (light ankle and low E_{max}), only very strong evolutions such as that of very luminous AGNs are clearly disfavoured.

Astrophysical sources evolution usually parametrised as:

$$(1+z)^\alpha$$

up to a redshift z_{max}

Denis Allard - Séminaires du LUTH - 14/02/2019 - Observatoire de Paris (Meudon)
Discussion of the resulting cosmogenic neutrino fluxes

The range of cosmogenic neutrino fluxes predicted in the framework of our model are low (mostly due to the low value of the maximum energy per nucleon).

Not observable by current and mid-term experiments.

GRAND and possibly POEMMA could see some neutrinos for GRB or SFR-like evolutions.

However there is possibly more to observe than just the cosmogenic neutrinos from the dominant contribution to UHECRs.
Let us consider proton accelerators (above 10^{20} eV) with a strong source evolution

- green curve is ruled out by Fermi, IceCube and Auger (composition)
- Let us instead assume it is a subdominant part of the spectrum, say 5% at 10^{19} eV
Let us consider proton accelerators (above 10^{20} eV) with a strong source evolution.

- Let us instead assume it is a subdominant part of the spectrum, say 5% at 10^{19} eV.
- Then it is not ruled out anymore by any experimental constraint.
Constraining the presence of powerful protons accelerators in the universe

Let us consider proton accelerators (above 10^{20} eV) with a strong source evolution

Let us instead assume it is a subdominant part of the spectrum, say 5% at 10^{19} eV

Then it is not ruled out anymore by any experimental constraint

The resulting neutrino flux is larger than that of a non evolving source scenario and 100% contribution to the UHECR spectrum
Constraining the presence of powerful protons accelerators in the universe

The resulting neutrino flux is significantly larger than that of the main UHECR component

Real window to constrain the presence of proton accelerator in the universe (and not only within the GZK horizon)
THANK YOU FOR YOUR ATTENTION!!!
Ground array detectors

- Sampling air shower particles at ground level
- Surface covered and detector spacing depends on the targeted energy range:
 - Kascade ($10^{15}-10^{17}$ eV): surface 40000 m2, 252 detectors, spacing 13m
 - Kascade Grande ($10^{16}-10^{18}$ eV): surface 0.5 km2, 37 detectors, spacing 130m
 - Auger ($10^{18.5}-10^{20}$ eV): surface 3000 km2, 1600 detectors, spacing 1500 m
- Different type of detectors:
 - Scintillators (KASCADE) (==> electrons)
 - Shielded scintillators (KASCADE) (==> muons)
 - Water Cerenkov Tanks (Auger) (==> all particles)