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Abstract. At a mesoscopic level (large compared with the solid lattice
spaceing but small compared with the vortex separation) the relative current

density ni
of conduction neutrons in a neutron star crust beyond the neutron

drip threshold can be expected to be related to the corresponding particle

momentum covector pi by a linear relation of the form ni = Kijpi

in terms of a physically well defined mobility tensor Kij
. This effect is

describable as an “entrainment” whose effect – wherever the crust lattice is
isotropic – will simply be to change the ordinary neutron mass m to an
effective mass m⋆

such that in terms of the relevant number density n of

unconfined neutrons we shall have Kij = (n/m⋆)γij .
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Fig. 1 – The (mesoscopic) effective mass
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In a preceding quantum mechanical analysis [1] based on a Hartree type
independent particle treatment using Bloch type boundary conditions to ob-

tain the distribution of energy Ek and associated group velocity vk
i =

∂E/∂ki as a function of wavenumber ki , it was shown that the mobi-

lity tensor would be proportional to a space space volume integral : Kij ∝∫
2vk

ivk
j δ{Ek − µ} , where µ is the Fermi energy. Using the ap-

proach due to Bogoliubov, is shown here [2] that the effect of BCS pairing

with a superfluid gap energy density ∆ and corresponding pseudoparticle

energy function =Ck =
√

(Ek − µ)2 + ∆2 will just be to replace
the Dirac distributional integrand by the smoother distribution in the formula

Kij ∝
∫
vk

ivk
j ∆2/=Ck

3 . It is concluded that the prediction of a large
effective mass enhancement will not be significantly effected by this pairing
mechanism.
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1 Introduction

In the “outer crust” of a neutron star the neutrons will be entirely confined
(together with the protons) inside atomic nucle as in ordinary terrestrial mat-
ter, but above the “drip” threshold (at about 1011 gm/cm3) a certain fraction
of the neutrons in the “inner crust” (and all the neutrons in the deeper layers at
densities exceeding the typical nuclear value of the order of 1011 gm/cm3) will
be free to form an independently moving current. There is general agreement
that except in very young neutron stars for which the temperature may be too
high (of the order of 109 degrees Kelvin or more) such neutron currents should
be able to survive over macroscopically long timescales due to the suppression
of (resistive and viscous) dissipation by the effect of superfluid pairing.
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Until now, quantum theoretical analysis of the mechanism of neutron su-
perfluidity has mainly concentrated on static configurations, meaning states
for which no current is actually flowing relative to the relevant background
which, in the crust of a neutron star, will be constituted by the ionic nuclei
to which some of the neutrons and all the protons will be confined. Even at
densities substantially beyond the neutron drip threshold it should still be pos-
sible to obtain a reasonably accurate description for the static case by using
an approximation [3] that treats the neighbourhood of each ionic nucleus as
if it were isolated in a (roughly spherical) Wigner Seitz type cell. However
for the treatment of more general – stationary but non static – configurations
involving relative conduction currents it is absolutely necessary to use a more
realistic description in which the artificial Wigner Seitz type boundary condi-
tions are replaced by the natural Bloch type periodicity conditions that would
be desirable for higher accuracy even in the static case.
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The use of appropriate Bloch type periodicity conditions is routine in
terrestrial solid state physics, but has so far been applied to neutron star
matter only in a simplified Hartree type treatment [1] (of the kind appropriate
for the relatively high temperatures expected in very young neutron stars) for
which the neutrons are considered to move as independent particles without
allowance for the pairing interactions responsible for the superfluid energy gap
that (in cool mature neutron stars) allows the currents to persist.

A simplified treatment of this kind has been used to show that the middle
layers of a neutron star crust will be characterised by a very low value for

the relevant mobility tensor in the formula ni = Kijpj for the current

ni = n v̄i
of unbound neutrons (which will be present above the “drip”

density of the order of 1011 gm/cm3) with number density n , mean velocity

v̄i
and momentum per neutron pi .
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In the independent particle treatment the mobility tensor was shown [1]

to be given by a volume integral over the space of Bloch momentum covectors

ki that is expressible in terms of a Dirac distribution with support confined

to the Fermi surface – where the relevant energy function Ek is equal to the

chemical potential µ – in the form

Kij =
1

8π3

∫
vk

ivk
j δ{Ek − µ} d3k , (1)

in which the relevant group velocity distribution is given by the usual formula

vi
k =

∂Ek

∂ki

. (2)
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Fig. 2 – The mobility coefficient
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The purpose of our work here is to show how the preceding independent
particle treatment can be generalised to allow for BCS type pairing using an
approach of the kind pioneered by Bogoliubov. One of the main motivations
for this is to check the robustness of the conclusions obtained from the simple
treatment described above, particularly the prediction of a very low value for
the mobility tensor, which is interpretable as meaning that the corresponding

effective mass m⋆ = n/3Ki
i will become very large compared with the

ordinary neutron mass.
Our conclusion is that as a first step towards a more accurate treatment,

in cases for which the superfluid pairing can be characterised just by a gap
parameter ∆k , the relevant integral over the Fermi surface will need to be
replaced by an phase space volume integral.
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This will be given in terms of the pseudo-particle energy

=Ck =
√

(Ek − µ)2 + ∆k
2 (3)

by the new formula

Kij =

∫
vk

ivk
j ∆k

2

(2π=Ck)3
d3k , (4)

in which the expression for the group velocity vk
µ

is the same as in the
absence of the gap. It is the diminution of this group velocity that is responsible
for the enhancement of the effective mass, which on average should therefore
not be greatly affected by the phase space smearing effect produced by the
superfluid pairing.
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2 Independent particle Hamiltonian

We start on the basis of a second quantised formalism in terms of local

Fermionic field annihilation and creation operators ψ̂ and ψ̂†
depending

on space position coordinates ri
taking discrete values on a mesh that is fine

compared with the physically relevant lengthscales, and on a spin varible σ

taking values ↑ and ↓ subject to the usual anticommutation rules

[ψ̂σ{~r}, ψ̂σ′{~r′}]+ = 0 , [ψ̂†
σ{~r}, ψ̂

†
σ′{~r′}]+ = 0 ,

(5)

[ψ̂†
σ{~r}, ψ̂σ′{~r′}]+ = δσσ′δ{~r, ~r′} . (6)
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We use a quadratic Hamiltonian operator of the form

Ĥ =
∑

~r

(
Ĥ

kin
{~r} + Ĥ

pot
{~r} + Ĥ

int
{~r}
)
, (7)

in which the last term Ĥ
int
{~r} will be absent in the independent par-

ticle limit corresponding to the kind of model used [1] in our preceeding first
quantised treatment.

In this independent particle limit, only the first two contributions are

present, of which the simplest is given by

Ĥ
pot
{~r} = V {~r}

∑

σ

ψ̂†
σ{~r}ψ̂σ{~r} (8)

where V {~r} is a position dependent potential.

0-12



Iin a “self consistent” model the potential should itself be given in the rele-

vant (ground state or conducting) reference state |〉 by a sum over spin values

and over relevant particle species – which in the context under consideration

means not just protons but also neutrons – of an appropriate (Green function

weighted) weighted mean over neighbouring positions of the expected number

density, as given for the neutrons with which we are primarily concerned here

by

nσ{~r} = 〈|n̂σ{~r}|〉 , n̂σ{~r} = ψ̂†
σ{~r}ψ̂σ{~r} . (9)

The (more or less “self consistent) contribution V {~r} is supposed to re-
present the averaged effect on the neutrons of the ionic lattice (which in the
crudest approximation can be taken to be given just by an array of spherical
square wells).
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It will be assumed that the potential can be taken to be of periodic crys-

talline type, with

V {~r + ℓa~ea} = V {~r} (10)

for any triad of integers ℓa (a = 1, 2, 3 ) in which the lattice basis vec-

tors ~ea may be interpreted as representing the interionic spacing in the solid
case that will be relevant at very lower temperature, but should in principle
be taken to be much larger (so as to generate a giant cell interpretable as a
typical mesoscopic average over a locally disordered configuration) for appli-
cations above the relevant melting temperature, at which it is to be expected
that (unlike the weaker electron pairing mechanism in ordinary terrestrial su-
perconductors) the superfluid neutron pairing mechanism will still be intact.
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The corresponding formula for the kinetic contribution will be given by

Ĥ
kin
{~r} =

∑

σ

ψ̂†
σ{~r}Hkin

ψ̂σ{~r} (11)

in whichH
kin

belongs to is a self adjoint differential operator in the category

specified in terms of a gauge covector ai by an expression of the familiar form

Ha = −γij(∇i + iai)
1

2m{~r}
(∇i + iai) (12)

in which γij
is the Euclidean space metric andm{~r} is the local effective

mass. In a crude approximation this could be taken to have a fixed value close
to the ordinary neutron mass value mn but in a more accurate treatment it
will need to be given a rather smaller value [3] inside the ionic potential wells.

0-15



The covector with components ai is a gauge field allowing for the possibi-

lity of adjustment of the phases of the field operators ψ̂σ{~r} . In applications

to particles with non zero electric charge ( e say) such as the electrons in

an ordinary terrestrial superconductor or the protons in the deeper layers of

a neutron star, the presence of such a field (taking the form ai = eAi )

would be necessary for the treatment of magnetic effects, but in the uncharged

case of the crust neutrons with which we are concerned here it will always be

possible to work in the standard gauge for which this covector is simply set to

zero, ai = 0 , which means that we simply take

H
kin

= H0 . (13)
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The neutron current density operators, will be given, for each value of the

spin variable σ , by

n̂ i
σ{~r} =

1

2im{~r}
γij
(
ψ̂†

σ{~r}∇jψ̂σ{~r} − (∇jψ̂
†
σ)ψ̂σ{~r}

)
.

(14)
Our objective of is to evaluate the mean value of this quantity, as given by

the corresponding space averaged operator

n̂ i
σ =

∑

~r

n̂ i
σ , (15)

as a function of the associated momentum in a stationary state that is non
static (and therefore non isotropic, since the mean current will characterise a
preferred direction) but uniform over a mesoscopic volume.
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3 Use of Bloch eigenfunctions

Subject to the usual Bloch type boundary conditions for a mesoscopic

material sample of parallelopiped form – with a unit volume that is taken to

be very large compared with the elementary lattice cells under consideration

– the Hamiltonian will determine a complete orthonormal set of scalar eigen-

functionsϕk{~r} satisfying the the requirement of invariance (subject to the

normalisation condition) with respect to infinitesimal variations δϕk{~r} of

the energy integral

Ek =
∑

~r

ϕk
∗{~r}

(
H

kin
+ V {~r}

)
ϕk{~r} , (16)

(using
∗

to indicate complex conjugation).
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The Bloch functions can be labelled by a wave covector ki such that

ϕk{~r} = uk{~r} eik·~r , (17)

using the abbreviation k · ~r = ki r
i

, where uk{~r} satisfies the same

ordinary lattice periodicity conditions as the lattice potential V {~r} , namely

u{~r + ℓa~ea} = u{~r} . (18)

They are characterised by the orthonormality conditions∑

~r

ϕ∗
k{~r}ϕk′{~r} = δkk′ (19)

as solutions of the elliptic eigenvalue equation
(
H0 + V {~r}

)
ϕk{~r} = Ekϕk{~r} . (20)
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Setting the wave number vector ki in place of ai in the definition

(12) this eigenvalue equation can be usefully rewritten in terms of the ordina-

rily periodic functions uk as

(
Hk + V {~r}

)
uk{~r} = Ekuk{~r} . (21)

The reality of the potential function implies that the phases of the eigenfunc-

tions can be chosen in such a way that for each wavenumber value

ϕ∗
k{~r} = ϕ−k{~r} , u∗k{~r} = u−k{~r} . (22)

0-20



Fig. 3 – Fermi surface in momentum space
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The corresponding annihilation and creation operators

ĉσk =
∑

~r

ϕ∗
k{~r}ψ̂σ{~r} , ĉ†σk =

∑

~r

ϕk{~r}ψ̂
†
σ{~r} (23)

will be subject to the standard anticommutation relations

[ĉσk, ĉσ′k′]+ = 0 , [ĉ†σk, ĉ
†
σ′k′]+ = 0 , (24)

[ĉ†σk, ĉσ′k′]+ = δσσ′δkk′ , (25)

In terms of these new operators the original position dependent annihilation

and creation operators will be given by

ψ̂σ{~r} =
∑

k

ϕk{~r}ĉσk , ψ̂†
σ{~r} =

∑

k

ϕ∗
k{~r}ĉ

†
σk. (26)
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It is to be noted that the discrete summations used here correspond in

the continuum limit to volume integrals in ordinary space and wavenumber

(pseudo - momentum) space respectively. On the understanding that the me-

soscopic sample box in ordinary space has unit volume (with respect to an

appropriately chosen measuring system such as c.g.s.) and that the dimension

of the corresponding reciprocal box in wavenumber space is specified by a

momentum cut off, kc say, the correspondence will be given by

∑

~r

↔

(
kc

π

)3 ∫
d3r ,

∑

k

↔

(
1

2π

)3 ∫
d3k . (27)

A finite value for the regularisation scale kc – which corresponds to a

smoothing lengthscale λc = 2π/kc – is needed in for the avoidance of
ultra-violet divergences, and will be provided by physical considerations.
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The smoothing lengthscale for the neutrons may be comparable with their

Compton wavelength. The orthonormality conditions (20) imply that the spin

dependent number density operator n̂σ{~r} will have space integral

n̂σ =
∑

~r

n̂σ{~r} =
∑

k

ĉ†σkĉσk . (28)

In terms of the independent particle contibution

Ĥ
ind
{~r} = Ĥ

kin
{~r} + Ĥ

pot
{~r} , (29)

the total energy operator, in the absence of the interaction contribution, will

be expressible in standard form as
∑

~r

Ĥ
ind
{~r} =

∑

k

Ek ĉ
†
σkĉσk . (30)

0-24



To get the mean current (over the unit volume sample under consideration)

as given by the operator (15) , we take the expectation value

〈|n̂i
σ|〉 =

∑

~r

〈|n̂i
σ{~r}|〉 , (31)

for a state | 〉 satisfying the simplicity condition that except for the diagonal

contributions for which σ′ = σ, li = ki the contributions of the expec-

tation values 〈|ĉ†σkĉσ′l|〉 will be negligible. We thus obtain an expression

of the form

〈|n̂i
σ|〉 =

∑

k

〈|n̂σk|〉v
i
k , (32)

in which vi
k is the relevant pseudo-momentum dependent velocity average.
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This velocity average will be given by

vi
k =

∑

~r

1

2im{~r}
γij
(
ϕ∗

k{~r}∇jϕk{~r} − ϕk{~r}∇jϕ
∗
k{~r}

)
,

(33)
which is mathematically equivalent to the well known, albeit less intuitively

obvious, group velocity formula that is given by (2) in terms of the single

particle energy introduced in (21) as

vi
k =

∂Ek

∂ki

. (34)
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4 Conducting reference state

The states in which we are interested are those that minimise the expected

total energy 〈|Ĥ|〉 subject not only to the usual constraint that there should

be a fixed given value of the corresponding total expected particle number

〈|n̂|〉 =
∑

σ

〈|n̂σ|〉 , (35)

but also, since we are concerned with non-static – conducting – configurations,

to the reqirement that there should also be a fixed given value of the total

〈|ˆ̃n i|〉 =
∑

σ

〈|ˆ̃n i
σ |〉 , (36)

of the expected current with spin components defined by (32) .
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Imposing these constraints via Laplace multiplyers µ and pi , the pro-

blem becomes unconstrained minimisation of the combination

〈|Ĥ ′|〉 = 〈|Ĥ|〉 − µ〈|n̂|〉 − pi〈|ˆ̃n
i|〉 . (37)

In the absence of the pair coupling term, this reduces to the form

〈|Ĥ ′
ind
|〉 = 〈|Ĥ

ind
|〉 − µ〈|n̂|〉 − pi〈|ˆ̃n

i|〉 . (38)

in which by (30) that the effective Hamiltonian Ĥ ′
ind

will have form

Ĥ ′
ind

=
∑

k

E ′
k ĉ

†
σkĉσk . (39)
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The effective energies will be given by

E ′
k = Ek − µ− pivk

i , (40)

which in the limit for which the squared momentum displacement |p|2 =
γijpipj is small can be expressed as

E ′
k = Ek−p − µ+ O{|p|2} . (41)

The expectation value of the quantity given by (39) will evidently be mi-

nimised by choosing the state vector |〉 in such a way that the expectation

〈|n̂σk|〉 = 〈|ĉ†σkĉσk|〉 has its maximum value, namely 1, whenever E ′
k

is negative, and its minimum value, namely zero, whenever E ′
k is positive.

0-29



It can thus be seen from (41) that the effect of the current will consist just

of a uniform shift of the distribution in momentum space by an amount given

by the infinitesimal momentum covector pi . Such a state is characterised by

the state conditions

ĉ†σkĉσk|〉 = nσk|〉 . (42)

with the eigenvalues given as a Heaviside distribution by

nσk = ϑ{−E ′
k} . (43)

This state satisfies the condition for aplication of the formula (32) , having

a well defined mean current value given (in accordance with our previous

evaluation [1] in a first quantised framework) by

ni
σ =

∑

k

vi
k ϑ{−E ′

k} . (44)
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When the current is small, it can be seen from (2) and (40) that this will be

expressible to first order in terms of the static limit value

nσk = ϑ{µ− Ek} . (45)

of the distribution (43) as

ni
σ = pj

∑

k

∂Ek

∂ki∂kj

nσk + O{|p|2} . (46)
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5 Bogoliubov pairing functions

Up to this point what we have just translated the work of our preceding

article [1] from first quantised to the second quantised formalism needed for

inclusion of for pairing interactions, which can be done in a BCS type model

by taking the interaction contribution in (7) to have the form

Ĥ
int
{~r} = ∆{~r}ψ̂†

↑{~r}ψ̂
†
↓{~r} + ∆∗{~r}ψ̂↓{~r}ψ̂↑{~r} ,

(47)
where ∆{~r} is a position dependent complex potential that, in a “self

consistent” model, should be given in the relevant reference state |〉 by an
appropriate mean (with a Green function weighting of the same kind used for

the “self consistent” evaluation of V {~r} ) over neighbouring positions of the

local crossed density expectation value 〈|ψ̂↓{~r}ψ̂↑{~r}|〉 .
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The mean complex phase of the function ∆{~r} is subject to an inde-
terminacy that can be resolved by fixing the phase in the specification of the
wave operators. In a static configuration one would expect that this coupling

potential ∆{~r} would share the ordinary periodicity property (10) of the

lattice potential V {~r} , and moreover that the phase should be adjustable

in such a way as to ensure that ∆ becomes real.
Instead of using the representation (28) in terms of the simple Block wave

functions ϕ′
k{~r} , in the approach introduced by Bogoliubov one seeks a

more general representation whereby the single component Block waves are

replaced by two component Bloch functions with components ϕk0{~r} and

ϕk1{~r}.
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These are related to ordinary periodic functions uk0{~r}, uk1{~r} by

(
ϕk0{~r}

ϕk1{~r}

)
= eik·~r

(
uk0{~r}

uk1{~r}

)
. (48)

The original representation (28) can thereby be replaced by a mixed represen-

tation involving a new set of position independent pseudo-particle annihilation

and creation operators γ̂σk and γ̂†σk in terms of which we shall have

ψ̂↑{~r} =
∑

k

(
ϕk0{~r}γ̂↑k − ϕ∗

k1{~r}γ̂↓
†
k

)
, (49)

ψ̂↓{~r} =
∑

k

(
ϕk0{~r}γ̂↓k + ϕ∗

k1{~r}γ̂↑
†
k

)
. (50)
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The Bogoliubov ansatz enable us to choose the new functions ϕk0{~r}
and ϕk1{~r} in such a way as to simplify the expression

Ĥ ′ =
∑

~r

Ĥ′{~r} , (51)

for the total effective Hamiltonian, in which

Ĥ′{~r}=
∑

σ

ψ̂†
σ{~r}H

′
ind
ψ̂σ{~r}+∆{~r}ψ̂†

↑{~r}ψ̂
†
↓{~r}+∆∗{~r}ψ̂↓{~r}ψ̂↑{~r} .

(52)
The independent particle contribution is given for a static configuration by

H′
ind

= H
ind

− µ , (53)

where, as before, µ is a Lagrange multiplier.
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The purpose of th multiplier µ is to impose the constraint that the
expectation of the total integrated number density should be held fixed when
we apply the variation principle. It is to be remarked that in the presence

of the BCS interaction term, the number operator n̂ will no longer exactly
commute with the Hamiltonian, which implies that the state that minimisies
the expectation of the effective Hamiltonian obtained in this way will not be
an exact eigenstate either of the particle number or of the energy.

Substitution of (49) and (50) leads to an expansion that is expressible suc-

cinctly (dropping the explicit reference to dependence on the position vector

~r ) in the form

Ĥ′ =
∑

k

Xk+
∑

kl

(
Ykl

∑

σ

γ̂†σkγ̂σk + Zklγ̂↑kγ̂↓l − Z∗γ̂↑
†
kγ̂↓

†
l

)
.

(54)
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The required (position dependent) coefficients Xk{~r} , Ykl{~r} ,
Zkl{~r} , will be given by

Xk = 2ϕk1H
′
ind
ϕ∗

k1 − ∆ϕk1ϕ
∗
k0 − ∆∗ϕk0ϕ

∗
k1 , (55)

Ykl = ϕ∗
k0H

′
ind
ϕl0−ϕ

∗
l1H

′
ind
ϕk1+∆ϕ∗

k0ϕl1+∆∗ϕ∗
k1ϕl0 ,

(56)

Zkl = ϕk1H
′
ind
ϕl0 + ϕl1H

′
ind
ϕk0 + ∆ϕk1ϕl1 − ∆∗ϕk0ϕl0 .

(57)
The essential step in the Bogoliubov procedure is to get rid of the contribution
from the last set of coefficients.
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The functions ϕk0{~r}, ϕk1{~r} must therefore satisfy
(
H′

ind

∆∗

∆

−H′∗
ind

)(
ϕk0

ϕk1

)
= =Ck

(
ϕk0

ϕk1

)
, (58)

where the eigenvalue =Ck is what will be seen to be interpretable as the

relevant pseudoparticle energy. This system can be written in terms of the

ordinarily periodic functionsuk0{~r} , and uk1{~r} introduced in (48) as
(
Hk + V ′

∆∗

∆

−H∗
k − V ′

)(
uk0

uk1

)
= =Ck

(
uk0

uk1

)
, (59)

using the notation of (12) , where

V ′{~r} = V {~r} − µ . (60)
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The foregoing specfication is incomplete, because the condition of satis-

fying (58) will evidently be preserved by interchanges of the form

ϕ∗
k1 ↔ ϕ−k0 , =Ck ↔ −=Ck , (61)

but this ambiguity is resolved by adoption of the usual postulate that the

eigenvalues be positive,

=Ck > 0 . (62)

The normalisation of the solutionsi is fixed in a manner that will automatically

satisfy the integral relations expressible – restoring the explicit reference to

the position dependence – as
∑

~r

ϕk1{~r}ϕl0{~r} =
∑

~r

ϕk0{~r}ϕl1{~r} . (63)
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This is done by requiing that the new operators should satisfy anticom-

mutation relations of the standard form

[γ̂σk, γ̂σ′k′]+ = 0 , [γ̂†σk, γ̂
†
σ′k′]+ = 0 , (64)

[γ̂†σk, γ̂σ′k′]+ = δσσ′δkk′ , (65)

which is achieved by fixing the amplitude of the (automatically mutually

orthogonal) solutions so as to obtain

∑

~r

(ϕ∗
k0{~r}ϕl0{~r} + ϕ∗

k1{~r}ϕl1{~r}) = δkl . (66)
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The foregoing ansatz reduces the effective Hamiltonian simply to

Ĥ ′=
∑

σ,k

=Ck

(
γ̂†σkγ̂σk− sin2θk

)
=
∑

σ,k

=Ck

(
cos2θk−γ̂σkγ̂

†
σk

)

(67)
in which the Bogoliubov angle, θk, is given, for each value of ki, by

cos2θk =
∑

~r

ϕ∗
k0{~r}ϕk0{~r} , sin2θk =

∑

~r

ϕ∗
k1{~r}ϕk1{~r} .

(68)
Minimising expectation of (67) gives the pseudo-vacuum reference state | 〉,

which contains none of the pseudoparticles created by the operators γ̂†σk :

γ̂σk| 〉 = 0 . (69)
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6 The BCS ansatz

Since (particularly for the middle layers of a neutron star crust, where
the effective mass enhancement is likely [1] to be most important) we are

still far from having a sufficiently knowledge of the solutions ϕk{~r} for
the independent particle model, it will evidently take some time before we
can hope to obtain a complete evaluation of the solutions for the coupled

equations for ϕk0{~r} and ϕk1{~r} using an accurate estimate of the

coupling coefficient ∆{~r} . In the meanwhile, as an immediately available
approximation, offering the best that can be hoped for as a provisional estimate
in the short run, we can use an ansatz of the standard BCS kind.
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The standard BCS ansatz is a prescription of the form

ϕk0{~r} = ϕk{~r} cos θk , ϕk1{~r} = ϕk{~r} sin θk ,

(70)
where the single component wave functions ϕk{~r} are the independent

particle eigenfunctions. These can be seen to be solutions of the simple Schroe-

dinger type equation

H′
ind
ϕk = Ek

′ϕk , (71)

for which, in the static case under consideration at this stage,

Ek
′ = Ek − µ (72)

where Ek is the ordinary Bloch energy value as introduced in (20) .
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It can be seen that the ansatz (70) will provide an exact solution in the

limit for which the relevant coupling field matrix elements

∆kl =
∑

~r

ϕ∗
k{~r}∆~rϕl{~r} , (73)

reduce to diagonal form, so that we have

∆kl = ∆kδkl , (74)

using the notation

∆k =
∑

~r

ϕ∗
k{~r}∆{~r}ϕl{~r} . (75)

This will only be an approximation when ∆{~r} is a field of the radially
dependent form that has been obtained [3] using a Wigner Seitz type model.
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The relation (75) will hold exactly when the coupling constant has a uni-

formly constant value ∆ (which by choosing the relevant phase can be taken

without loss of generality to be real and positive) so that we shall simply have

∆{~r} = ∆ = ∆k , Subject to the validity of (74) , the BCS ansatz

(70) will reduce the Bogoliubov system of differential equations (58) to the

purely algebraic eigenvalue system having the form

(
E ′

k

∆k

∆k

−E ′
k

)(
cos θk

sinθk

)
= =Ck

(
cos θk

sinθk

)
. (76)

The required eigenvalue for this BCS equation is given by the well known

formula

=Ck =
√

E ′
k
2 + ∆k

2 . (77)
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The corresponding field amplitudes will be given by

tan θk =
=Ck − E ′

k

∆k

, (78)

which implies

cos2θk =
=Ck + E ′

k

2=Ck

, sin2θk =
=Ck − E ′

k

2=Ck

. (79)

The ansatz (70) rduces the Bogoliubov transformation to the simple form

ĉ↑k = cos θk γ̂↑k−sin θk γ̂↓
†
−k , ĉ↓k

= cos θk γ̂↓k+sin θk γ̂↑
†
−k .

(80)
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The Bogoliubov transformation is equivalenty expressible as

γ̂↑k = cos θk ĉ↑k+sin θk ĉ↓
†
−k , γ̂↓k = cos θk ĉ↓k−sin θk ĉ↑

†
−k .

(81)
It follows that for the state | 〉 characterised by (69) the expectation values

of the wavenumber dependent number density operators n̂σk introduced in

(28) will be given by

〈|n̂σk|〉 = sin2θk , (82)
This result is interpretable as expressing the effect commonly described as a

smearing of the Fermi surface, whereby the smoothed out momentum space
distribution (82) replaces the hard cut off expressed by the Heaviside formula
(45) that applies in limit when the BCS coupling coefficient is set to zero.
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7 Formula for the mobility tensor

When the static contribution charcterised by (53) is extended by the inclu-
sion of the current constraint term proportional to the momentum covector pi
in the effective energy (37) , it can be seen that – as in the independent par-

ticle limit – its effect to first order will still be given just by the corresponding
uniform displacement in the space of Block wavenumbers ki .

Whether or not the BCS coupling term is included, the first order effect of

the current will be entirely taken into account just by the set of infinitesimal

adjustments

E ′
k 7→ E ′

{p}k = E ′
k−p . (83)
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The effect of the current will therefore be given to first order by the infi-

nitesimal transformations

θk 7→ θ{p}k , γ̂σk 7→ γ̂{p}σk , | 〉 7→ |{p}〉 , (84)

The expectation value of the total current thus obtained in the current car-

rying perturbed state |{p}〉 will be given by (32) as

ni
{p} =

∑

σ

〈{p}|n̂
i
σ|{p}〉 =

∑

σ,k

vk
i 〈{p}|n̂

i
σk|{p}〉 , (85)

in which as the analogue of (82) we shall have

〈{p}|n̂
i
σk|{p}〉 = sin2θ{p}k . (86)
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Since there is no current in the unperturbed state | 〉, we just get

ni
{p} = 2

∑

k

vk
i pi

∂(sin2θ{p}k)

∂pi

+ O{|p|2} . (87)

It follows from (83) that in the small |p| limit we shall have

∂E ′
{p}k

∂pi

= −
∂E ′

{p}k

∂ki

= −
∂Ek

∂ki

= −vk
i , (88)

and hence that the partial derivative in (87) can be evaluated in this limit as

∂(sin2θ{p}k)

∂pi

= −vi
k

∂(sin2θk)

∂E ′
k

= −vi
k

∂(sin2θk)

∂Ek

, (89)

in which sin2θk is given as a function of the quantity E ′
k = E −µ and

of ∆k by (79) .
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The conclusion to be drawn from this is that the value of the current will

be given by an expression of the same form

ni
{p} = pjK

ij + O{|p|2} , (90)

as in (46) , in which the required mobility tensor will be given by the formula

Kij = −2
∑

k

∂(sin2θk)

∂Ek

vk
ivk

j , (91)

in which, by (115 ) , the relevant coefficient will be given by

∂(sin2θk)

∂Ek

= −
∆2

2=Ck
3
. (92)

The translation of the discrete summation formula (80) into the language of
continuous integration is given by (4) .
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Except at base of crust where there are exotic (e.g. “spagetti” or “lassagne”

type) configurations, the mobility tensor will have isotropic form,

Kij = Kγij , (93)

in which, writing vk
2 = γijvk

ivk
j, we shall have

K =
1

3
γijK

ij = −
2

3

∑

k

∂(sin2θk)

∂Ek

vk
2 . (94)

For case of constant gap parameter, ∆k = ∆, one gets

Kij =2
∑

k

sin2θk

∂2Ek

∂ki∂kj

, K=
2

3

∑

k

sin2θk γij

∂2Ek

∂ki∂kj

.

(95)
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This formula (95) for the case of uniform coupling is useful for the evalua-

tion of the corresponding effective mass m⋆
as defined by

m⋆ = n/K , (96)

in terms of the relevant total particle number density as given by the pres-

cription

n =
∑

σ

〈|n̂σ|〉 = 2
∑

k

sin2θk , (97)

in which, if we only wish to count unbound neutrons, the summation should
be taken only for values above a lower cut off below which the states are bound
so that the corresponding values of the velocity vk will vanish. Note that the
concept of an effective mass has often been a source of confusion as different
definitions have been used in different contexts.
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In terrestrial solid state physics main concern is electric charge (not mass)

whose transport in electric field Ei is given by Ohm law

ji = e ni = σijEj. (98)

The conductivity tensor σij
relates macroscopic measurable quantities,

but it depends on the dynamical evolution of the medium unlike the newly

introduced mobility tensor Kij
, on which the effective massm⋆ is defined.

Since the conductivity tensor is given by

σij = e2τKij (99)

where τ is a typical scattering time, it will diverge whenever the system is
in a superconducting state while the mobility tensor remains well behaved.

0-54



The result (91) smears the Heaviside distribution in the formula obtained

without pairing, but is otherwise similar, involving the same group velocity

vi
k given as the momentum space gradient of the energy distribution Ek by

(2) not its analogue ṽi
k got by substituting =Ck in place of Ek , namely

ṽi
k =

1

~

∂=Ck

∂ki

. (100)

This latter “pseudovelocity” is a mean velocity between particles and holes,
since =Ck is the energy of a quasiparticle which is a mixture of particles and
holes. When (as in the simple B.C.S. case) the gap parameter is independent
of the momentum, this modified velocity will be given by the expression

ṽi
k = vi

kE
′
k/=Ck , so ṽi

k will vanish at the Fermi surface characterised

by Ek = µ , where the number of particles is equal to the number of holes.
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In the free particle limit for which, in so far as the unbound neutrons are

concerned, the effect of the ionic potential wells characterised by the function

V {~r} is small (either because the wells occupy only a small part of the

volume, as will be the case just above the neutron drip transition, or because

the wells are shallow, as will be the case near the base of the crust) we shall

have

∂2Ek

∂ki∂kj

=
1

m
γij , (101)

where m is the uniform mass scale appearing in the kinetic energy opera-
tor, which will be comparable with, but for precision somewhat less that, the
ordinary neutron mass mn . It can be seen by comparing (95) and (97) that
in this free approximately uniform limit the effective mass for the unbound
neutrons will be given simply bym⋆ = m , regardless of whatever the value
of the gap parameter ∆ may be.
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8 The property of superconductivity

Although there is much discussion of what is called“superconductivity”
in astrophysically relevant contexts (including such exotic varieties as colour
superconductivity in quark condensates) very little attention has been given
to the actual property of superconductivity in the technical sense, meaning the
possibility of having a relatively moving current that is effectively stable, or
in stricter terminology metastable, with respect to small perturbations – such
as would normally give rise to a dissipative damping mechanism of a resistive
or viscous kind.

To find any discussion of the essentially important question of supercon-
ductivity in this technical sense – and in particular to find some attempt to
provide a theoretical estimate the critical current value beyond which the su-
perconductivity property will break down – we had to go back to relatively
ancient literature concerned with electrons in laboratory metals, in which the
issue is dealt with [4] in a rather brief and summary manner using heuristic
arguments inspired by Landau’s classic treatment [5] of the analogous problem
in the context of superfluid Helium 4.

0-57



In the literature concerned on pulsars it has been taken for granted that
neutron currents of the kind considered here actually are superconductiing in
the sense of being metastable with respect to relevant kinds of perturbation.
The purpose of this section is to demonstrate that this supposition of metas-
tability should indeed be valid for the small amplitude currents in question.
The issue is that of the stability, for small but finite values of the momentum

covector pi , of the superconducting reference state | 〉 = |{µp}〉 that is

characterised by the minimisation of the combination (37) .

The conducting state |{µp}〉 was derived by minimising the energy expec-

tation 〈|Ĥ|〉 subject to the condition that the particle number expectation

〈|n̂|〉 and the current expectation 〈|ˆ̃n i|〉 were held fixed. It is physically

evident that the particle number expectation 〈|n̂|〉 really will be preserved
under the conditions of chemical equilibrium that are envisaged in the relevant

applications, but why should 〈|ˆ̃n i|〉 be preserved ?
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In a “normal” state the current expectation 〈|ˆ̃n i|〉 would tend to be

damped by various scattering process. The crucial question is whether |{µp}〉

will still minimise 〈|Ĥ|〉 with respect to small relevant perturbations –

subject as before to particle number preservation – when the prior assumption

of preservation of 〈|ˆ̃n i|〉 is abandonned. Subject to the particle number

conservation condition δ〈|n̂|〉 = 0 , this stability requirement is equivalent

to the condition of minimisation of 〈|Ĥ ′|〉 meaning that any admissible

perturbation must satisfy

δ〈|Ĥ ′|〉 > 0 , (102)

using, according to (37) , the notation Ĥ ′ = Ĥ ′
{p} + pi

ˆ̃n i .
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According to the reasonning of the previous section, the relevant adjust-

ment of (68) will give us

Ĥ ′
{p} =

∑

σ,k

=C{p}k

(
γ̂†{p}σkγ̂{p}σk − sin2θ{p}k

)
, (103)

so that the specification (36) provides the variation formula

δ〈|Ĥ ′
{p}|〉 =

∑

σ,k

(
=C{p}kδ〈|γ̂

†
{p}σkγ̂{p}σk|〉 + pi v

i
kδ〈|n̂σk|〉

)
,

(104)
in which, for the BCS case, it can be seen from (77) that we shall have

=C{p}k =
√

E ′
{p}k

2 + ∆2
k . (105)
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In this BCS case, the action on the conducting state |{µ,p}〉 of a typical

quasiparticle creation operator γ̂†{p}↑k will provide only three non vanishing

terms in the sum (104) , namely those given by

δ〈|γ̂†{p}↑kγ̂{p}↑k|〉 = 1 , (106)

together with the number variation contributions

δ〈|n̂↑k|〉 = cos2θ{p}k , δ〈|n̂↓−k|〉 = −sin2θ{p}k .

(107)
The symmetry property vi

k = −vi
−k ensures that the net energy contri-

bution in (104) from such an excitation will be positive if and only if

=C{p}k + pi v
i
k > 0 . (108)
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It is to be noted that such an individual quasiparticle excitation may vio-
late the requirement (8) that the number of real particles should be conserved,
but it is evident from (107) that such violations may have either sign and so
can be cancelled out by the combined effect of two or more elementary ex-
citations. What, in a stable case, can not be cancelled out is the combined
effect of several quasiparticle energy contributions in (104) : the quasiparticle
energy contributions will always add up to give the positive result needed for
stability provided the inequality (108) is satisfied for all admissible modes.

The stability condition (108) that we have derived in this way is the ana-
logue, for a BCS type superconductor, of Landau’s critical upper limit condi-
tion [5] for the relative flow rate of a simple superfluid. Squaring both sides

of this inequality and substituting the expression (40) for E ′
{p}k in (105) we

see that in the BCS case there is a remarkable simplification (which does not
seem to have been pointed out before) whereby the terms that are non linearly
dependent on the momentum covector pi cancel out,
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The stability condition will thereby take the form

2 pi v
i
k E

′
k < =C 2

k . (109)

This can be rewritten in terms of the “pseudovelocity” introduced in (100) as

pi ṽ
i
k <

1

2
=Ck , (110)

which is equivlent to

pi

∂

∂ki

(
ln{=C 2

k}
)
< ~ . (111)

For this to hold for all modes the magnitude p of the mean particle momen-

tum covector pi must satisfy an upper bound of the form

p < pc . (112)
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For an approximately isotropic distribution depending only on the magni-

tude k of the wavenumber covector ki , the critical value pc will be given

by

pc ≈
min

k

{
1

vk

(
|E ′

k| +
∆2

k

|E ′
k|

)}
, (113)

or equivalently by

~

pc
≈

max
k

{
∂

∂k

(
ln{=C 2

k}
)}

. (114)

Since E ′
k vanishes on the Fermi surface, it is clear from (113) that pc

will also vanish – so that there will be no phenomenon of superconductivity –
not only when the gap ∆k vanishes everywhere, but even when it vanishes
just in the neighbourhood of the Fermi surface.
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When the gap value ∆F at the Fermi surface is non-zero but small

compared with the other relevant energy scales – as will typically be the case

– it can be seen that the minimum in (113) will be attained for energy values

differing from the Fermi value by a small but finite positive amount that will

be given approximately by E ′
k ≈ ±∆F . In such a case, it follows that the

critical momentum value (113)will be expressible in terms of the value vF of

the group velocity magnitude vk at the Fermi surface by the approximation

pc ≈ 2
∆F

vF
. (115)

This more carefully derived formula is consistent with previous estimates ba-
sed on vaguer heuristic arguments in the context of electon superconductivity
in metals [4].
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For a gap of the order of an Mev, in a region where the kinetic contribution
to the Fermi energy has a typical value of the order of a few tens of Mev, the
formula (115) implies a critical momentum value corresponding to a kinetic
energy of relative motion of the order of hundreds of Kev per neutron. This
is comparable with the total kinetic energy of rotation in the most rapidly
rotating pulsars. However the relative rotation speeds of the neutron currents
that are believed to be involved in pulsar glitch phenomena are very much
smaller – by factors of 10−4 or even far less – than the absolute rotation speeds
of the neutron star. In all such cases it may therefore be concluded that the
superfluidity criterion (115) will be satisfied within an enormous confidence
margin.

It is to be remarked that in the more thoroughly investigated context of
laboratory superfluidity [5] Landau’s simple linear formulation of the stability
problem in terms just of phonons provides only an upper limit on the critical
momentum whose true value is considerably reduced by the less mathema-
tically tractable – since essentially non linear – effect of what are known as
rotons. Analogous considerations presumably apply in the present context.
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The upshot is that although our present treatment places the estimate
(115) on a sounder footing than was provided by any previous work of which
we are aware, it should still be considered just as an upper bound on the true
critical value which is likely to be substantially reduced by non linear effects
whose mathematical treatment is beyond the scope of the methods used here.

Despite this caveat, the prediction of genuine superconductivity in the
context of glitching neutron star crusts should be considered to be very robust.
The justification for such confidence is that – according to the considerations
outlined in the preceding paragraph – the relevant magnitudes of the neutron
currents in question correspond to values of the neutron momentum p that
are extremely small compared with the order of magnitude given by (115) .
For such very low amplitude currents there is no obvious reason to doubt
the validity of conclusions – including estimates of effective masses, as well as
the prediction of genuine superfluidity – that are based on the simple kind of
linearised treatment used here.
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9 Conclusions

In the middle layers of the crust, where the inhomogeneities in V {~r}
will be important, our previous analysis neglecting the pairing gap lead to

the prediction [1] of a strong “entrainment” effect whereby the value of m⋆

will become very large compared with m . We find here that this will not
be significantly affected by the relevant gap ∆ : so far as the effective mass
is concerned neglect of superfluid pairing will be justifiable as a robust first
approximation, at least for moderate values of the gap parameter.

The unimportance of pairing for entrainment is because, when ∆k is
small, the coefficient (92) will be very small except in a thin layer with width

of the order of ∆k near the Fermi surface locus where Ek = µ , so
when the coupling is weak its effect will be entirely negligible. In sensitive
cases for which the geometry of the energy contours near the Fermi surface is
complicated by band effects, a moderately strong pairing effect might make a
significant difference by smoothing out variations of the mobility tensor as a
function of density, but it seem ulikely that this smearing effect would make
much difference to the large scale averge properties of the mobility tensor.
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