
Two branches of neutron stars: reconciling massive pulsars and SN 1987A

collaboration with

P. Haensel & J.L. Zdunik (CAMK, Warsaw)

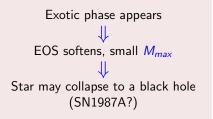
Michał Bejger LUTh 27.06.07

Brown-Bethe hypothesis for SN1987A

Bethe & Brown 1994, 1995

Explain the observable amount of $\sim 0.075 M_\odot$ of radioactive ^{56}Ni AND in the same time lack of a pulsar in the SN remnant

Solution (?)


- \blacksquare Kaon condensation: dense matter EOS becomes soft \rightarrow stars' maximum mass $M_{max}\sim~1.5M_{\odot}$
- Fallback, delayed collapse to black hole: enough time to eject the radioactive material

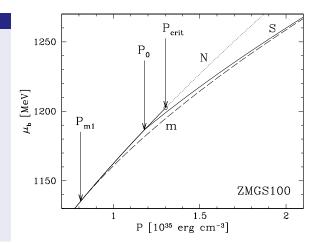
Two birth scenarios: "cold" vs "hot"

Cold scenario

No exotic phase is produced (star too cold/not sufficiently dense) ↓ accretion of matter ↓ Production of PSR J0751+1807 (Nice et al. 2005) 2.1 ± 0.2 M_☉

Hot scenario

But...


what exotic phase? Kaons, quarks?

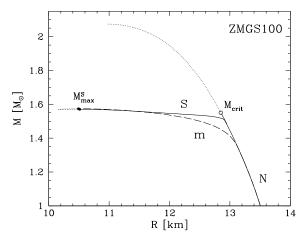
First order phase transition to kaon condensate

Example EOS:

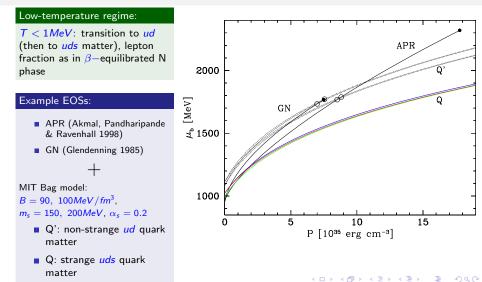
phase N: Zimanyi & Moszkowski (1990) phase S: Glendenning & Schaffner-Bielich (1999) with $U_{\kappa}^{lin} = -100 \text{MeV}$

- *P_{m1}*: onset of the mixed phase
- *P*₀: equilibrium pressure of pure phases
- *P_{crit}*: pressure at which kaons spontaneously appear
- chemical potential $\mu_b = (\mathcal{E} + P)/n_b$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 - のQで


Stars with kaon-condensed cores: M(R) relation

TOV solutions


:-(

- Maximum masses M^S_{max} for mixed and pure phases EOSs almost identical
- $\blacksquare M_{max}^S \simeq M_{crit}$
- Cannot go above M_{crit}!

Unfortunately, maximum mass M_{max}^{S} or M_{crit} too low to explain observations of $\sim 2M_{\odot}$ pulsars...

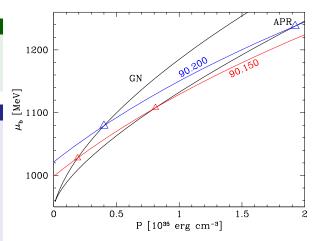
Quark de-confinement: ud matter

Michał Bejger LUTh 27.06.07

Quark de-confinement: uds matter

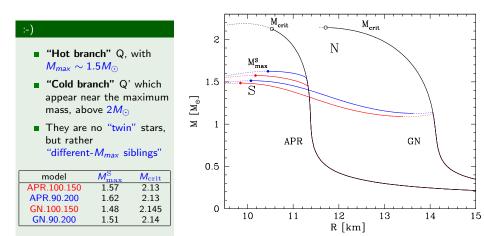
High-temperature regime:

For $T \simeq 50 MeV$ uds matter created at lower *P*, thermal fluctuations & existence of strange particles (hyperons)


Example EOSs:

- APR (Akmal, Pandharipande & Ravenhall 1998)
- GN (Glendenning 1985)

MIT Bag model: $B = 90, \ 100 MeV/fm^3,$


 $m_s = 150, \ 200 MeV, \ \alpha_s = 0.2$

Shown here: the dependence on the quark mass m_s

▲口▶▲御▶▲臣▶▲臣▶ 臣 のなぐ

Stars with quark cores: M(R) relation

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Summary

More than one EOS of dense matter?

- Massive pulsars were born without exotic cores and acquired the mass later, by accretion
- SN1987A produced proto-neutron star with exotic core that subsequently collapsed into a black hole
- The original Brown-Bethe hypothesis fails for a kaon condensate EOS, but works well with quark de-confinement

