

Cherenkov Telescope Array

Laboratoire de l'Univers et de ses Théories

Science Prospects for CTA

A. Zech SNOWPAC, March 2010

Outline

- 1) The Cherenkov Telescope Array
 - a) Science Case
 - b) The CTA project
 - c) CTA Design Study

2) Prospects of AGN science with CTA

1) The Cherenkov Telescope Array

a) Science Case

gamma-ray astronomie in 1995

'Observatoire

UTF.

gamma-ray astronomy in 2010

A. Zech / SNOWPAC

Observatoire

UTF.

time for a VHE Observatory !

The next generation of IACT arrays needs to function like a true observatory.

-> observation time for the whole astrophysics and -particle community

-> observation program
 driven by proposals

-> open access to data at different levels & to analysis tools

What is the origin and nature of cosmic rays and how do they interact with their environment ?

- Origin and propagation of Galactic cosmic rays (only SNR?)
- Understanding of processes around pulsars, binary systems, PWN structure (maps !)
- Starburst galaxies
- Detection of galaxy clusters ?
- Signatures of UHECR acceleration sites ?

The Big Questions

What is the nature of the different types of black hole particle accelerators ?

- Detailed understanding of acceleration & emission processes in different classes of AGN
- Detection of VHE gamma rays from GRBs ?

What is the nature of dark matter ? Are there other signatures of physics beyond the standard model ?

- Cosmology with VHE gamma rays (probing the EBL)
- Detection of Dark Matter ?
- Fundamental physics (test Lorentz Invariance Violation)

Gain of factor 10 in sensitivity, down to mCrab

- Very large spectral coverage (a few 10 GeV to >100 TeV)
- Improved angular resolution down to arc-minute range
- Temporal resolution down to sub-minute time scale
- Flexibility of operations
- Full sky coverage using North & South installations

Expected sensitivity for CTA

03/24/10

1) The Cherenkov Telescope Array

b) The Project

Expected sensitivity for CTA

C *I* A

> 100 institutes, 22 countries

Present partners :

Argentina, Armenia, Austria, Bulgaria, Croatia, Czech Republic, Finland, France, Greece, Germany, Ireland, Italy, Japan, Netherlands, Namibia, Poland, Spain, South Africa, Sweden, Switzerland, UK, USA

- Regular general CTA meetings since 2006 next meeting in Berlin/Zeuthen (May 10 - 12, 2010)
- spokesperson: W. Hofmann (MPIK Heidelberg)
- co-spokesperson: M. Martinez (IFAE Barcelona)
- open to new members !

CTAGIS ?

- Two synergetic concepts
- CTA: rely mostly on proven, low-cost technology (single mirror telescopes, PMTs,...)
 - extension of the energy coverage from a few 10 GeV to 100 TeV
- AGIS: superior telescope design (secondary mirrors) -> better angular resolution
 - but more expensive and focused on mid-E range
- => good cooperation
- => future collaboration/merger seems likely

Putting CTA on the (road)map

l'Observatoire LUTH

Laboratoire de l'Univers et de ses Théories

Timeline

Tentative timeline towards the CTA observatory

	06	07	08	09	10	11	12	13	14
Array layout									
Telescope design			Des	io.					
Component prototypes									
Telescope prototype					Pro	totype			
Array construction								Arra	v
Partial operation									,

Timeline

Tentative timeline towards the CTA observatory

	06	07	08	09	10	11	12	13	14
Array layout									
Telescope design			Des	io.					
Component prototypes									
Telescope prototype					Pro	totype			
Array construction								Arra	V
Partial operation									,

2010: - R&D ongoing on detectors, electronics, trigger, mirrors, ...

- soon publication of the Conceptual Design Report
- preparation for telescope prototypes

The Cherenkov Telescope Array CTA Design Study (a quick look)

MC: mass production

Large scale simulation of "Hyper-Array" with 275 telescopes of 5 different types

Observatoire

→ Selection of candidate sub-arrays under cost constraints

→ Study of performance with regard to science goals

O(10^11) events generated using the Grid (vo.cta.in2p3.fr) and offline

O(10²) TB data stored

MC: mass production

new performance curves will be published soon

Large scale simulation of "Hyper-Array" with 275 telescopes of 5 different types

Observatoire

→ Selection of candidate sub-arrays under cost constraints

→ Study of performance with regard to science goals

O(10^11) events generated using the Grid (vo.cta.in2p3.fr) and offline

O(10²) TB data stored

Telescope Design

Small Size Telescope (SST)

Medium Size Telescope (MST)

Large Size Telescope (LST)

Several telescope designs are being tested (current focus on 12 m, 23 m)

performance criteria:

- large f.o.v. ->
 large f/D (1.4 2)
- stiff structure
- active mirror control
- > 30 year lifetime under field conditions

03/24/10

Site Search

Northern Site Candidates:

Canary Islands (2400m asl) Baja California (2800m asl)

Southern Site Candidates:

Namibia (1800m asl) Chile (2400m asl) Argentina (2600 & 3700m asl) South Africa ?

no decision taken yet

2) Prospects for AGN Science with CTA

- today: ~30 BL Lacs, 2 FSRQ, 2(3) radio galaxies, (Sgr A* ?)
- population studies, luminosity function
 - today: largely biased in redshift, small statistics
- spectral features and variability
 - information on acceleration & cooling processes
 - hadronic vs. leptonic scenarios
 - constraints on emission region
- mapping of radio galaxies
- Probing the EBL and the extragal. magnetic field

Observatoire

prediction with Fermi AGN

- Extrapolation of Fermi spectra (1 yr AGN catalog) to the TeV range + absorption by the EBL (Franceschini et al.)
- "clean" sample, known z, flux 1-100 GeV (418 objects)
- Overestimates the # of detectable sources !
 - possible intrinsic spectral breaks ignored
 - ideal sensitivity curve for CTA
- Underestimates the # of detectable sources !
 - not all TeV blazars have been detected by Fermi
 - does no account for flares or very active states
 - only sources with known redshift
- similar extrapolations have led to the discovery of new TeV sources (e.g. PKS0447-439, RGB J0648+152, ...)

CTA

Observatoire

ora prediction with Fermi AGN

ora prediction with Fermi AGN

Laboratoire de l'Univers et de ses Théories

prediction with Fermi AGN

CTA

'Observatoire

Variability

- e.g. 2006 flare of PKS 2155-304:
 - H.E.S.S. detected> 100 gammas/min.=> good statistics down to the 1 min. scale
- With CTA, the rate would be a factor of ~ 10 higher
 - => good statistics down to a few seconds
- CTA will allow us to test the low state for the existence of rapid variability.

-8

Variability

CTA will allow us to test the low state for the existence of rapid variability.

03/24/10

- CTA will establish the first VHE gamma-ray observatory.
- The CTA Design Study is advancing quickly and CTA is now entering its Preparatory Phase.
- CTA will present a huge advancement for astro(particle) physics, cosmology and fundamental physics.

Many thanks to the organisers !

Special thanks to the Meudon CTA group (C. Boisson, H. Castarede, M. Cerruti, H. Sol) and to A. Neronov !

BACKUP SLIDES

GTA Spectrum signatures - an example ^{Observatoire}

SSC Model

LUTH

A. Zech / SNOWPAC

GTA Spectrum signatures - an example

Laboratoire de l'Univers et de ses Théories

LUTH

Observatoire

Hadronic Model

GTA Spectrum signatures - an example

Laboratoire de l'Univers et de ses Théories

LUTH

'Observatoire

Lepto-Hadronic Model

03/24/10

The Milky Way as CTA would see it

Galactic plane as seen by H.E.S.S.

Observatoire

LUTH

CTA/AGIS Simulations *Digel + Funk (Stanford) + Hinton (Leeds)*

03/24/10

The Big Questions

What is the nature of dark matter ? Are there other signatures of physics beyond the standard model ?

Observato

Population Studies

Veron-Cetty & Veron BLLAC catalog (12th edition)

Observatoire

=> still many blazars to discover at TeV energies !

=> and maybe
other types of
AGN ?

Different observation modes

CTA observation modes

'Observatoire

LUTH

CTA

Different observation modes

CTA observation modes

Monitoring 4 telescopes

Monitoring 4 telescope Deep field ~1/2 of telescopes Monitoring 4 Telescopes

Deep field ~1/3 of telescopes

Monitoring 1 telescope

CTA

Different observation modes

CTA observation modes

Survey mode: Full sky at current sensitivity in ~1 year

CTA

Low-energy section: few O(20-30) m tel. (LST) => push low threshold

- Parabolic reflector
- FOV: O(3-4) degrees - f/D: O(1.2-1.5) energy threshold of some 10 GeV

Southern Site: galactic & extragalactic sources Northern Site: extragalactic sources (no high E)

Core-energy array: many O(10-12) m tel. (MST)

=> workhorse of CTA -> push cost & reliability

- Davies-Cotton reflector ?
- FOV: O(6-8) degrees
- f/D: O(1.2-1.5) mCrab sensitivity in the 100 GeV–10 TeV domain

High-energy section: some O(5-6) m tel. (SST) => push low-cost

- Davies-Cotton reflector ?
- FOV: O(10) degrees
- f/D: O(1.2-1.5)

10 km² area at multi-TeV energies

MC: Comparison of Arrays

▼: reduced f.o.v.

K. Bernlöhr, CTA Meeting, Cracow, 2009-05-12

ora prediction with Fermi AGN

blue: 115 sources with signal above 10 GeV

Observatoire

LUTH

Data Management

- Development of data architecture
- observation planning, handling of proposals, ...
- how to give the user access to ~1 PB/yr of data in various forms (raw, DSTs, maps...) ? (GRID technologies)
- definition of data standards for VHE gamma-ray data
- interface with the Virtual Observatory (VO) and multimessenger science

Mirror, Camera

Observatoire LUTH

MIRRORS

Proven Solutions:

- Aluminzed glass (H.E.S.S.)
 - -> Average cost, suffers from ageing, high weight
- Machined Aluminium on alu honeycomb (MAGIC)
 - -> High cost, low ageing, low weight

New Solutions proposed:

Mirrors in carbon-epoxy composite or PE foam

-> Probably low cost, low weight, performance ?

CAMERA

- Decision to have a fully-integrated camera
- PMT measurement of many samples (standard, super/ultra-bialkali, hemispherical window, multi-anode, flat-panel...) under way.
- Studies of new technologies (e.g. SiPM) a future upgrade option

Analogue pipeline solution for the in-camera acquisition, several GHz-sampling most probable solution (existing SAM, DRS3, future DRS4, NeCTAr). Aim to integrate the maximum functionality in ASIC (=cost+reliability)

Camera-level Trigger, by sectors / clusters Read-out using the maximum of commercial components / protocols... Inter-telescope trigger with central array clock-distribution over fibre (à la Antares), event time-stamping

WP TEL/MIR: MST mounting scheme

CTA Extragalactic magnetic field

Attenuation of Y-rays via pair production on EBL

03/24/10

A. Zech / SNOWPAC

Observatoire

LUTH

Non-blazar AGN

angular resolution

Adapted from Funk, Reimer, Torres, Hinton 2008

The ongoing mass production of simulated events will provide more detailed predictions.