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1. Introduction

The broadband SEDs of blazars exhihit two broad spectral components. In
leptonic models the low-energy component is attributed to synchrotron radia-
tion of relativistic electrons whereas the high-energy component results from
synchroton-self Compton (SSC) interactions of the relativistic electrons, inverse
Compton upscattering the synchrotron photons.
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The Fermi survey of blazars (Abdo et al. 2009) and multiwavelength monitoring
of the individual blazars PKS 0528+134 (Aharonian et al. 2005), 1ES 1121-
232 (Aharonian et al. 2007b), PKS 0528+134 (Sambruna et al. 1997) and
Mrk 421 (Fossati et al. 2008) have shown that during high state phases the
SSC component dominates over the synchrotron component implying that the
inverse Compton SSC losses of electrons are at least equal or greater than the
synchrotron losses of electrons, even more when the intergalactic deabsorption
of the TeV emission from the cosmic infrared background is factored in. The
linear synchrotron cooling, included standardly in radiation models of blazars,
then has to be replaced by the SSC cooling.

Ls = me? / qv /1 dy n(7) s,

Lssc = me® / v / dy n(7)rsisc (1)

All physical quantities are calculated in a coordinate system comoving with the
radiation source.
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2. Nonlinearity of the SSC energy loss rate

For spatially isotropically distributed relativistic electrons the generated syn-
chrotron photons also are spatially isotropically distributed with the differential
number density

_ 4mRjs(e,t)
N ce

(2)

where € denotes the synchrotron photon energy and R is the radius of the
spherical source. The spontaneous synchrotron emission coefficient

ng(e,t)

istet) =3 [ dimntip(e) ®)

is calculated from the electron distribution function and the synchrotron power
of a single electron. The synchrotron power of a single electron (Crusius and

Schlickeiser 1988) in a large-scale random magnetic field of constant strength
Bis

1(z)Wy a(z) = W1

'3 3 2

_ DPpe 2¢ _
ps(ﬁ,")/) = 705 <360’yz> y CS(.’L') = WO

v is the electron Lorentz factor, Py = ay/2v/3h = 3.2 1012 eV~1s7!, ¢
1.16 - 1073b eV for a magnetic field strength B = b Gauss.
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The SSC power of a single electron is (Schlickeiser 2002, Ch. 4.2) is

pssclen) =c [ dens(etheo(ene) @
0
with the differential Klein-Nishina cross section (Blumenthal and Gould 1970)

3o

0(687 677) = wG((LP) (6)
with
F2 2 1—
Gla.1) = Gola) + 500, Gula) = 2qtug+ (14 2001 - ). (D)
and
_ Aey _ €s
I'= mez? 17 T(ymc? — e5) ®)

€s denotes the scattered photon energy, « is the electron Lorentz factor, ¢
denotes the speed of light and o7 = 6.65 - 10725 cm? is the Thomson cross
section.
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The SSC energy loss rate of electrons is

. 1 €s,max
[Ylssc = 2/ despssc(€s;y) =
mc 0

3 oo €s,max
CUT2/0 dee_lng(e,t)/o desesG(q,T) (9)

dmc2y

where €5 max = ['yme?/(T' + 1) corresponds to ¢ = 1. Using ¢ as integration
variable instead of ¢, results in

1200’]" 2

/OOO deeng(e, t)J(T) (10)

with the integral J(T') = fol dqqG(q,T)(1 +T'q)~3 yielding

[Hlssc = ——5

1 11
I'>1)~ — [In[— — 11
e (1)
In the Klein-Nishina range (I' > 1) the inverse Compton losses are much
reduced, as compared to the Thomson range (I' < 1), and therefore negligible
(J(I' > 1) = 0). We find for the SSC energy loss rate in the Thomson limit —
hereafter referred to as SST-cooling

ch

4CUT 2 4~
L), Walt) = /0 deeng(et)  (12)

|¥]ssc, L ~
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Inserting Egs. (2) — (4) we obtain

2 ch
AnR [T PR (> /4w 2¢
s(t) = — d ) = —— d ,t deeCS
Wilt) = T2 [ dejstey = 2 [T adgaintan [ aecos (325
PRZ [ 92/9°
QZRGO/ dggzn(g,t)/ dzx zCS(x) (13)
¢ 0 0

with

me2  2.21-104

ge(y) = 6eoy = b1/2’71/2 (14)

The dominant contribution to the double integral in Eq. (13) results from the
interval g < g. yielding
9P0R6201 ge
Wilt) = == [ dgg’n(g,?) (15)
¢ 0

where ¢; = [;° dz2CS(x) = 33v/3 = 0.684
We now require that the maximum(=initial) electron Lorentz factor is such that
70 < go(Y0) (better fulfilled for Fermi blazars) which is equivalent to

2

213
Yo < {660} =1.7-10%1/3 (16)




In this case the effective energy density in synchrotron photons equals the total
energy density in synchrotron photons

9Py Re3c >
Wi(t) 2= 20 [Tyt (a7)

The SST energy loss rate (12) then becomes

3010’TP0R62
720 (18)

which depends on the energy integral of the actual electron spectrum.

o0
[¥|ssT ~ Ao’yz/ dyy*n(vy,t), Ao =
0 mc
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3. Linear synchroton and nonlinear SST electron
cooling

The competition between the instantaneous injection of ultrarelativistic elec-
trons (o > 1) at the rate Q(v,t) = qod(y — 70)d(t) at time ¢ = 0 and the
electron synchrotron energy losses is described by the time-dependent kinetic
equation for the volume-averaged relativistic electron population inside the ra-
diating source (Kardashev 1962):

on(y,t) 0

ot oy [[¥In (7, £)] = qod(v — 70)d(t) (19)

3.1. Linear synchrotron cooling

The energy loss rate of relativistic electrons due to synchrotron radiation in a
large-scale random magnetic field of constant energy density U = B2/8r is

4 corT
3 mc?

The solution of this kinetic equation is (H denotes Heaviside step function)

14ls = Doy?, Do = Up=1.29-107%% s7! (20)

ns(190.1) = wHbo =1 (1 = 35(0), W)= p— (1)
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The half-life time, ts is

1 775-10%
Doo Y4b?

ts (22)

where we scale vy = 10%;,.

3.2. SST cooling

The case of solely SST cooling is solved in Schlickeiser (2009) giving for the
nonlinear SST-solution

Y0
[1 + 3A0q0’yg’t] 1/3

nsst = qoH[v0 — |6 (v — vssT(t)), 7ssr(t) = (23)

implying the modified SST energy loss rate |vssr| = Aogovdsr. The half-life
time, tf/%T, is

7
SST _ _ —1;-2p—1_-3
i = 3400078 =9.02¢5 b "Rz, s (24)

with the scalings R = 10'5R;5 cm and ¢y = 10°gs5 electrons cm—3.

In comparison to the linear synchrotron loss time (22) the SST loss time not
only depends differently on the initial electron Lorentz factor but also depends
on the initial kinetic energy of injected electrons (proportional to gyyp) and
the source radius R because these quantities determine the number density of
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the target synchrotron photons. The more electrons are injected, the stronger
the magnetic field and the more compact the source region, the quicker each
electron cools under the SST process. Such a collective behaviour is new
and completely different from the linear case.
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4. Combined linear synchrotron and nonlinear SST
cooling
(Schlickeiser, Bottcher, Menzler 2010)

For combined synchrotron and SST cooling (18) the kinetic equation of the
electrons (25) reads with the substitution y = Ayt

on(y,t) 0

oy oy

where Ko = Do/Ag. We set S = 7?n and use = 1/ as independent variable
to obtain

a0 (Ko + [~ d33%600) )| = woly -t 29

0

as 08 o
- — | K mm—2 5 — _ 2
o+ S0 o+ [T s ()| = wite i) 29
Now we define the implicit time variable T" through
dar o
— =Ul(y) = Ky +/ dxz=2S(x,y) (27)
dy 0
Then Eq. (26) becomes
oS 08
aT + 9 q06(x — x0)d(T) (28)

which is solved by the method of characteristics (or double Laplace transform)
as
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S, T) = qod(x =T — z) (H[T| — H[T — z]) (29)

The final step is then to calculate explicitely the time variable T" as a function
of y. Use Eq. (29) in Eq. (27) to write

1 90
=Ko+ qH|T|H|x =Ko+ — 30
0T d0 [ ] [ 0}(1’0+T)2 0 (x()—l—T)Q ( )
for zg > 0 and T > 0. With z(y) = 2o + T(y), Eq. (30) becomes
dz Qo  qo+ Ko?
Z =Ko+ 5 = 1
d o+ 22 22 ) (3 )

which after separation of variables with the integration constant C leads to

dz q0 Ky
K0y+C'1—z—/K22—z—,/arctan< z), (32)
14 202 Ko \ %
qo0 Ko
xo+ T(y) — o arctan q—o[xo +T(y)] | = Koy + Cy (33)

or
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The integration constant C is fixed by the condition that 7' = 0 for y = 0
yielding

q K, K
Koy=T — ?00 [arctan ( qfoo[xo + T(?/ﬂ) — arctan (\/Zx(])} (34)

Unfortunately, for Ky # 0 this dependence y(7T') cannot be inverted to infer
the general dependence T'(y). However, an approximate inversion is possible
by using the asymptotic expansions of the arctan-function for small and large
arguments compared to unity.

4.1. Injection parameter

The argument of the arctan-function is always larger than a~! = z¢(Ky/q0)"/?.

Therefore, we have to consider the two cases (i) & > 1 and a < 1, respectively.
The parameter @ depends on the energy density of the initially injected rela-
tivistic electrons and can be written as

1/2 1/2 1/2
_aw” a0 4 4 Ng4
= An T 12 An 6 R (35)
K, "z K, B 15
with the characteristic Lorentz factor
1/2
K 2 U 217R
’YB _ 0 _ 4 cUup o 15 (36)

3/2 N 3 clpoRe%qo N N1/2

q 50
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for standard blazar parameters R = 10°R;5 cm and the total number of
instantaneously injected electrons N = 41 R3qq/3 = 105° N5, where we scale
the electron injection Lorentz factor vy = 10%~,.

Obviously, the more compact the source is, and the more electrons are injected,
the smaller the characteristic Lorentz factor vg is. If the injection Lorentz
factor 7y is higher (smaller) than ~p, the injection parameter o will be larger
(smaller) than unity. For a compact sources with a large number of injected
relativistic electrons the injection parameter « is much larger than unity.

For small values of the injection parameter a < 1, corresponding to vg < Vg,
the time evolution of the electron distribution function is solely determined
by the linear synchrotron losses, whereas for large injection parameters o >
1, corresponding to 79 > g, nonlinear SST losses determine the electron
distribution function at early times. Hence, the time evolution of the electron
distribution function is affected by the nonlinear SST losses only if the injection
Lorentz factor g exceeds the characteristic value yp which is determined by
the number of injected electrons and the size of the source.

4.2. Small injection energy vy < V5

In the case of small injection energies 7y < vp the injection parameter a < 1
is smaller than unity, so that the argument of the arctan-function in Eq. (33)
is always larger than unity. For all values of T" and y Eq. (33) then simplifies
to
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zo + T (y) ~ Koy + Co, (37)
and with Cy = 2 to
T(y) ~ Koy (38)
In terms of y the solution (30) then reads with zy > 0

S(z,w0,y) = qoH[x — x0]6 (x — w0 — Koy), (39)
yielding

40 - _
n(v,70,t) = ?H[% — N0 (v =" — Dot)

Yo
=qoH[yo -6 [v— —2 ), 40
qoH [v0 — 7] (’Y T+ Doo t) (40)

which agrees with the standard linear synchrotron cooling solution (21).

4.3. High injection energy vy > 75

In the case of high injection energies 9 > ~yp the injection parameter o« > 1 is
larger than unity. With the injection parameter (35) we rewrite Eq. (33) as

1+L 1+L
Koy + Cy :azvol o —arctan( xo)
a a

(41)
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Figure 1: Comparison of exact solution y(7") (full curve) with asymptotic
solution y1(7) at small times (dashed curve) and asymptotic so-
lution y2(T") at lates times (dotted curve) for the high injection
energy case with g5 = 1, zog = 107% and K = 1, corresponding to
a=3-10°.




For small times 0 < T < T,, where

T. = (a — 1)z, (42)

we use arctan(z) ~ x — (23/3) to obtain

o T\?
Koy +Ci~2—(1+— ) , 43
oo 1T 302 < x0> (43)
or
(xg+T)3
=— "7 _C 44
Y1 300 2 (44)

With T'= 0 for y = 0 the integration constant Cy = x%/BqO is fixed so that

(o —|—T)3 _ L%

Y1 = 45
! 3q0 340 (45)
This solution is valid for T' < T, corresponding with Eq. (42) to
0<y< it (0®—1) = —2(a® — 1) (46)
= — |0 — = — |\ —
= y — yC 3(]0 30[2K0

For times T' > T, or y > y. the argument of the arctan-function in Eq. (41) is
large compared to unity, yielding

Koys +C3 ~ 29 + T, (47)
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or the linear relation

Yo = - Cy (48)

The constant Cjy is determined by the equality of the two solutions y;(7}) =
y2(T.) = yc at T, providing

3

3
aTo , %o 3 %o 3
Cp=20 4 201 _o3) = 20 1 42043, 49
204 21— ) = 20 [14207) (49
so that
1/2 3
_ zo+T  2¢)°  ap (50)
Y2 KQ 3K§’/2 36_[0 Linear synchroton . . .
In Fig. 1 we compare the two approximate solutions (45) and (50) with the Combined linear...
exact solution (34). The agreement is reasonably good. duiitiite eppiestyy,
Both approximate solutions (45) and (50) can be inverted to yield Total synchrotron ...
Synchrotron and. . .
1/3 Summary and. ..
1/3 3a2K0y
Ti(y <ye) = [3(109 + $g] g Ty = X0 <1 + TO —1 (51)

and

1 30Ky 3
TQ(yZyc):xO |:3042 <Q70+1+2a -1 (52)




We then find for small times

n1(7770at < tC) = qu[’YO - ’Y]H[tc - t]5 (7 - (1 4 3q0f,>;03A0t)1/3> ) (53)
0

which agrees with the nonlinear SST solution (23) of Schlickeiser (2009). At
late times

B
n2(7v,70,t > te) = qoH[yp — y|H[t —t:]0 | v — , (54)
‘ ‘ LE26° 4 ypKoAot

which is a modified linear cooling solution. Note that both solution show that
at time

Y ad—1 1

Ay 3adypDy = 3vBDo

te

2.6-105 1.2 10°N2/>
= S =
vBb? Ry5b?

the electrons have cooled to the characteristic Lorentz factor vp.

(55)
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4.4. Interlude

Summarizing this section: provided electrons are injected with Lorentz factors
higher than ~p, given in Eq. (36), they initially cool down to the characteristic
Lorentz factor «p by nonlinear SST-cooling until time ¢, . At later times
they further cool to lower energies according to the modified cooling solution
(54). If the electrons are injected with Lorentz factors smaller than g they
undergo only linear synchrotron cooling at all energies with no influence of the
SST cooling. The characteristic Lorentz factor vp is only determined by the
injection conditions, whereas the time scale ¢, also depends on the magnetic
field strength.

This different cooling behaviour for large and small injection energies affects
the synchrotron and SSC intensities and fluences which we investigate in the
next sections.
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5. Intrinsic optically thin synchrotron radiation
intensities

The optically thin synchrotron intensity n(v,t) is given by
. R [
I(e,t) = Rjs(e,t) = ; dyn(v,t)ps(e, 7). (56)

5.1. High injection energy
Inserting the electron density (53) gives at early times ¢ < ¢,

)= . 1 2/3
Lie, 7 <7e)= 3R87:g;€06 1+ 7]2/‘3 Cs (6[ —;j;—] ) ; (57)

where we have introduced the initial characteristic synchrotron photon energy
3

Ey = 56073 = 1.74by3 eV (58)
and the dimensionless time scale

7 = 3A0qovet = 3a* Doyt = 3a’t/t,, (59)

with the linear synchrotron cooling time t; = 7.75 - 1046_274_1 s. Then

qovg o’ —1
Ko a3

T, = 3A0q0*ygtc = =ao® -1, (60)
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Likewise, inserting the late electron density (54) gives

_ RPyqoeoe

blerzr) =g g

(1 + 2043 + 7')2 CS <90[Z_E [1 + 2043 + T}2>
0
(61)

in terms of the same dimensionless time (58).

The function C'S(x) is well approximated by (Crusius and Schlickeiser 1988)
CS(z) = ape~ e (62)

with ag = 1.151275 yielding

3a €
Lie,m < 7e) = 8—7;)RP0(]060(6/E0)1/3 1+ 7']2/9 exp <—E0 1+ T]2/3> (63)

and

31340 RP,
L(e,7> 1) = 2 Gottrodo

- 8rai/3

(e/Eo)3 1+ 20% + 7] exp (—:2) . (64)

respectively, with the cut-off energies

e(r < 7) = Bo(1+7) %, ea(r 2 7) = 90" By [1+20° +7] 7 (65)




With respect to photon energy € both synchrotron intensities exhibit the same

increasing power law with exponential cut-off behaviour; however, the cut-off

energy differs for small and late times due to the different electron cooling

behaviour. Note that €;(7.) = e2(7.) = Ep/a?.

The cut-off energies (65) determine the time-dependence of the peak energy

€p(T) of the synchrotron SED €I (e, 7). At early and late times times we obtain
4eq 4F 4F

WT<Te) = 5 = g s T 3 32 L)2/3 (66)

and

4 120 F, 120 F,
Gp(TZTc):ﬂ: QL . "L

= 67
3 [1+2a3 + 7]? [1—|—2o¢3—|—30¢2£)]2 (67)

respectively, which is illustrated in Fig. 2.

For the high injection case the synchrotron peak energy decreases from its intial
maximum value Ej, a0 = (4Eo/3) proportional to (1 -+ 7)72/3 for small times
T<T.=a—1to E, = p,max/oﬂ. At later times 7 > 7. the peak energy

decreases further proportional to 772.
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Figure 2: Time-dependence of the peak energy €,(t) of the synchrotron SED
for high (o = 10, lower curve) and low (o = 0.1, upper curve)
values of the injection parameter.




5.2. Small injection energy

For the small injection energy case a@ < 1 we use the electron density (40)
which in terms of the normalized time scale (58) reads

e 07) = o =16 (7 - 2 (69
302

[0}

We obtain for the synchrotron intensity at all times

f(@T)ZW@Jr?;Z)Q CS <ﬁ;0 [1+T}2> ~

3agRPyqoeg [ € 1/3 ( T \2/3 € T 19
il SR 1 7> 1 —
8 Eo t3a2) ol (69)

Here the synchrotron peak energy

_ 4B, 4E (70)

€
P31+ 55)? 3(144)?

decreases from its intial maximum value (4Fj/3) proportional to t=2 for t > t,.
The upper curve in Fig. 2 refers to this case. Note that for large times the
high and small injection energy cases yield the same o< ¢t~ 2-decrease of the peak
energy.

Intrinsic optically . . .
Total synchrotron. . .

Synchrotron and. . .

Summary and. . .




5.3. Light curve peak times

Egs. (66), (67) and (70) also provide the photon energy dependences of the
intrinsic light curve peak time or the time of maximum intensity of the syn-
chrotron flare tyax(€) = tsTmax(€)/302.
For the small injection energy case (¢« < 1) we reproduce the well known
relation
B\ 12

tmax(ev o< 1) = tS (32) -1 (71)
for all energies below 3Ej.
For the high injection energy case (o > 1) we obtain

Bo)\1/2 _ 20’41 for e < Lo

3 302’
tmax (€, > 1) =, 136 E 3/23a En 0 (72)
sz [(5)Y° 1] forex £

indicating a steeper power law (£ax o € %/2) at photon energies above Ey/3a?,
whereas at lower energies the standard (ox e~'/2) dependence results.

This is also clearly visible in Fig. 3 where we compare the light curve peak
times for small and high injection energy conditions. Note that at large photon
energies € > Fy/3a? the high injection peak time is a factor 3o shorter than
the small injection peak time. This results from the faster additional SST
cooling of relativistic electrons in the high injection case.
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Figure 3: Photon energy (x = ¢/Ej) dependence of the synchrotron light
curve peak time for high (o = 100, full curve) and low (o = 0.1,
dashed curve) values of the injection parameter.




6. Total synchrotron fluences

In order to collect enough photons, intensities are often averaged or integrated
over long enough time intervals. For rapidly varying photon intensities this cor-
responds to fractional fluences which are given by the time-integrated intensities
Fyi(e ty) = f(ff dtI(e,t). The total fluence spectra result in the limit ¢ty — oo

o 1 o0
F(e) = Fr(e, ty = 00 :/ dtI(e,t :/ drI(e, T
@ =Ffety=o0) = [ “arren) = oy [Tarren)

6.1. Small injection energy
The synchrotron intensity (69) yields for the total fluence
B2 oo
Fy(e) = Fyg <°> / dz z'2CS (2),
€ e/FEo

(with the constant Fyg = 3a2RPyeo/(16mAgv3)) with the asymptotics

Co (&)1/2 for e < Ej,

€

(EO) exp (—e/Ep) for e > Ey.

€

Fs(e) ~ FOS {

(73)

(75)
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6.2. High injection energy

Here the synchrotron intensities (57) and (61) yield after obvious substitutions
for the total synchrotron fluence

Fule) = — [/0 dr Ii(e,7) + /Oo dr 12<e,7)]

3409073
B\ 32 - rea®/Eo 2 poo
— Fy (“) [ / dz 23208 (2)+ / dz zV/2C'S (x)} (76)
€ €/E0 0 ea2/Eo
(with the constant Fy, = %) and the asymptotics
coa® (%)1/2 for e < Eg/a?,
Fy(e) ~ Fon { ¢ (%)3/2 for Ey/a? < e < Ey, (77)

(%) exp (—e/Ey) for e > Ej.
At high synchrotron photon energies (¢ > FEj) the total synchrotron fluences
for small and high injection energy exhibit the same exponential cut-off.
However, at low energies (¢ < Ep): in the small injection energy case the
total synchrotron fluence exhibits the single power law behaviour oc e /2. In
the high injection energy case the total synchrotron fluence steepens from the
power law o e~ /2 below Ey/a? to the power law o< €3/ above Ey/a?.
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6.3. Total fluence synchrotron SED

For the total fluence SED S(e) = €F'(€) we then find in the two cases of small
(s) and high (h) inhection energies

[ e \?
S =So— | =— —e/ E 78
=50 () exo(~e/E) (78)
and
042 € 1/2 €EB
Sple) =Sop— | — exp (—e/Ep), 79
0 =52 (£) 2 exp(-e/m) (19)
with the constant Sy = 300m02/32010;p and the characteristic break energy
CQEO EO
= =0.703— 80
B coa? o? (80)

Fig. 4 shows the fluence SEDs N (x), x = ¢/ Ey, for small (as = 0.1) and high

(ap, = 100) injection conditions.

The ratio of peak values is given by Syl sl
Summary and. . .

Total synchrotron . . .

N,
R = _hweak g7t (81)
s,peak Qg

For the case shown in Fig. 4 this ratio is R = 9.7 - 10°.




a

Ny
=

Figure 4: Total synchrotron fluence SED N(x) as a function of x = ¢/Ej
for high (ay, = 100, full curve) and small (a; = 0.1, dashed curve)
injection conditions calculated for v = 10%.
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6.4. Summary of the differences

D1) In the high injection case the synchrotron SED peaks at a photon energy
which is a factor 2z = 1.404% = 1.4-10* smaller than the peak in the small
injection case.

D2) The high injection energy peak value decreases at small times ¢ < ats/3
more rapidly than the small injection energy peak value.

D3) The high injection SED is a broken power law with spectral indices 0.5
below and —0.5 above the peak energy zp < 1, respectively, and it cuts-off
exponentially at photon energies x > 1. Below the peak energy xp the time of
maximum synchrotron intensity decreases as tmay < € /2, whereas above the
peak energy zp it decreases more rapidly as tmax o € /2 due to the severe
additional SST losses.

D4) The small injection SED is a single power law with spectral indices 0.5
below the peak energy 0.5, and it cuts-off exponentially at photon energies x >
1. Here the time of maximum synchrotron intensity decreases as tyax o € /2
at all energies = < 1 because in the small injection case the SST-losses do not
contribute.

All four features are quantitatively visible in Figs. 2-4. These predicted dif-
ferences for the total synchrotron fluence SED and the synchrotron light curve
behaviours provides a conclusive test for the presence of high or low injection
energy conditions in blazars.
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7. Synchrotron and SSC fluence SEDs and light
curves from numerical radiation code

In Fig. 5 we show the photon energy variation of the light curve peak time
calculated with the numerical radiation code of Bottcher et al. (1997) using
a magnetic field strength b = 1 and an injection Lorentz factor 7y = 10%
for the high (o, = 100) and small (as = 0.1) injection case. The numerical
variations are in perfect agreement with the different power-law variations found
analytically, which are included in Fig. 5 for orientation, and confirm our earlier
findings.
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Figure 5: Numerically calculated synchrotron light curve peak times for
small (as = 0.1) and high (aj, = 100) injection conditions cal-
culated for g = 10* and b = 1.
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In Fig. 6 and 7 we show the numerical synchrotron and SSC SEDs using a
magnetic field strength b = 1 and an injection Lorentz factor vg = 10* for the
high (a, = 100) and small (a5 = 0.1) injection case.

Both synchrotron SEDs are in remarkable agreement with the analytical SEDs
shown in Fig. 4. In particular, the numerical SEDs confirm all four predicted
differences listed in the last section. For orientation, we have plotted in both
figures the asymptotic analytical synchrotron spectra as dashed and dash-dotted
lines.
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Figure 6: Numerically calculated fractional and total synchrotron and SSC
fluence SEDs for high (o = 100) injection conditions calculated
for 79 = 10%. Note that the SSC emission has been artificially
cut off at low frequencies as it would otherwise overwhelm the
high-energy end of the synchrotron emission.
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The radiation code also yields the SSC fluence SEDs. We note from Figs. 6 and
7 that for the high injection case the SSC SED has a much higher amplitude
than the synchrotron SED, whereas the opposite holds for the low injection
case. Moreover, both SSC SEDs peak at the same photon energy, although the
SSC peak value in the high injection case is a factor 2 - 107 larger than in the
small injection case.
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Figure 7: Numerically calculated fractional and total synchrotron and SSC
fluence SEDs for small (as = 0.1) injection conditions calculated
for 9 = 10*. The full curves show the total fluence SEDs. The
dashed lines show the analytical asymptotes.




8. Summary and conclusions

e The broadband SEDs of blazars exhihit two broad spectral components
which in leptonic emission models are attributed to synchrotron radiation
and SSC radiation of relativistic electrons. If the high-frequency SSC
component dominates over the low-frequency synchrotron component,
the inverse Compton SSC losses of electrons are at least equal or greater
than the synchrotron losses of electrons. The linear synchrotron cooling,
included standardly in radiation models of blazars, then has to be replaced
by the SSC cooling.

Introduction

e The SSC energy loss rate of electrons calculated in the Thomson limit
(SST cooling) exhibits nonlinear behaviour because it depends on an
energy integral of the actual electron spectrum, reflecting the dependence
of the energy density of the target synchrotron photons on the differential

electron energy spectrum. The dependence on the initial kinetic energy .
Total synchrotron . .
Synchrotron and. . .
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of injected electrons is a collective effect completely different from the
linear synchrotron case.

e For the illustrative case of instantaneous injection of monoenergetic par-
ticles we solve the nonlinear kinetic equation for the intrinsic temporal
evolution of the relativistic particles under combined linear synchrotron
and nonlinear SST-cooling.




e Qualitatively differenres for the light curves and SEDs resulting depending
on whether electron cooling is initially Compton dominated (high injection
energy parameter «) or it is always synchrotron dominated (low «). The
injection parameter parameter o = 7/ depends on the Lorentz factor
7o of injected electrons energy density of the initially injected relativistic
electrons and can be written as and the characteristic Lorentz factor
YB = 217R15N5;)1/2, fixed by the source radius R = 10 Ry5 cm and the
total number of instantaneously injected electrons N = 10%0 Nsy.

e In the low-a case, the resulting fluence spectrum exhibits a simple ex-

ponentially cut-off power-law behaviour, S, o v!/2¢=*/*0_ In contrast, Introduction

in the high-a case, we find a broken power-law with exponential cutoff, Nonlinearity of the. ..
parametrized in the form S, ul/zui—ﬁBe*”/”O. Based on our analysis Linear synchroton . ..
we propose the following interpretation of multiwavelength blazar SEDs: B —

Intrinsic optically . . .

e Blazars, where the «-ray fluence is much larger than the synchrotron flu-
ence, are regarded as high injection energy sources. Here, the synchrotron
fluence should exhibit the symmetric broken power law behaviour around =uchioionlandits
the synchrotron peak energy that is a factor (ay,70)2 smaller than the Summary and...
SSC peak energy. Below and above vp the synchrotron light curve peak
times exhibit different frequency dependences tyax (v < vp) v~12 and
tmax(V > 1) o v 32, respectively, resulting from the additional severe
SST-losses at v > vpg.
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e Blazars, where the «-ray fluence is much smaller than the synchrotron
fluence, are regarded as small injection energy sources. Here, the syn-
chrotron fluence exhibits the single power law behaviour (D4) up to a
higher synchrotron peak energy that is a factor 43 smaller than the SSC
peak energy. In this case the synchrotron light curve peak time exhibits
the standard linear synchrotron cooling decrease ty,x (V) v=12 at all
frequencies.

e If the injection Lorentz factor vy and the size of the source are the same,
different values of the injection parameter « result from different total

numbers of instantaneously injected electrons. E.g., the high injection Introduction
case ay, = 100 results for N5g = 4.7, whereas the low injection case Nonlinearity of the. . .
as = 0.1 needs N5y = 4.7 - 106, Linear synchroton . . .

.. . . . . Combined lii
e These predictions of spectral behaviour with time and frequency provide ———

conclusive tests for the presence or absence of linear synchrotron cooling
or nonlinear SST cooling in flaring nonthermal sources.
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