Hadronic cascades in GRBs and AGNs

> Katsuaki Asano (Tokyo Tech.)

> > Collaboration with S.Inoue, P.Meszaros M.Kino

GRB Standard Picture

GRB 090510

GRB 090510; Spectra

GRB 090902B

Extra Component in 090902B

Extra Component=Afterglow?

Monte-Carlo Method

Power-law injection of protons Energy density of photons U_{γ} Energy density of magnetic field $U_B = f_B U_{\gamma}$ Energy density of Accelerated protons $U_p = f_p U_{\gamma}$

Method

Iterative Method

To estimate p γ , Inv.Comp., $\gamma \gamma$ processes, we need a photon field.

During the dynamical timescale, the photon field is assumed to be steady.

Cascade Processes

$$p + \gamma \rightarrow n + \pi + p + \gamma \rightarrow p + \pi^{0}$$

$$\pi^{+} \rightarrow \mu^{+} + \gamma_{\mu} \qquad \pi^{0} \rightarrow \gamma + \gamma$$

$$\mu^{+} \rightarrow e^{+} + \overline{\gamma}_{\mu} + \gamma_{e} \qquad p + \gamma \rightarrow p + e^{-} + e^{+}$$

$$\gamma + \gamma \rightarrow e^{-} + e^{+}$$
Synchrotron + Inv.Comp.: p, $\pi^{\pm}, \mu^{\pm}, e^{\pm} \rightarrow \gamma$

Synchrotron Self-absorption: $\gamma + e \rightarrow e$ Iterative Method -> Both photon field and cascade processes are solved consistently. Highest Energy

The energy of particles is limited by two conditons.

•The Larmor radius $R_L = e E_p / B < \text{shell width } \Delta = R / \Gamma$. •The acceleration time $\xi R_L / c < \text{cooling time}$.

> Cooling Processes: •Proton Synchrotron+IC •Photoproduction of pions •Bethe-Heitler

Proton acceleration efficiency

We need 6-8 10⁴³ ergs/Mpc³/yr to explain UHECRs

We may need Up/U γ >20. If GRB rate is 0.05 Gpc⁻³/yr, Up/U γ >100

Proton Dominated?

Energy

To make gamma-rays from protons contribute enough, the proton energy largely exceeds the gamma-ray energy??

Distortion due to proton cascade

Double break

Double break 2

Much More Protons

Energy-dependence

B-dependence

GRB 090510; Spectra

Cascade due to photopion production

Synchrotron and Inverse Compton due to secondary electron-positron pairs

Neutrinos from GRB 090510

We may need $>10^{-2}$ erg/cm² to detect with IceCube.

GRB 090902B

Naked Eye GRB

GRB080319B

GRBs

- GeV Photon detection $\rightarrow \Gamma > 1000$
- Extra Component -> Afterglow? Hadronic?
- High $\Gamma \rightarrow$ Lower Photon Density, Magnetic Field
- ->Lower Effciency for Photopion Production
- Hadronic Models require >10⁵⁵erg/s for GRB 090510

Ref. E_{iso} ~ 10⁵⁵erg in gamma-rays for GRB080916C

Gamma-rays from hypernovae

Particle Acceleration in Winds

Proton Cooling in Hypernova

Secondary Photons

- Secondary emission from hyeprnovae
 - X-ray due to cascade from muon decay
 - GeV emission from proton synchrotron
 - "Delayed" TeV emission

HN Rate ~ 500 Gpc⁻³yr⁻¹

Compact Radio-Loud AGN

Evolution??

FRII radio galaxies

Size < 500 pc

CSOs (Compact symmetric objects)

e.g., Carvalho et al. 1985; Fanti et al. 1995; Begelman 1996; Readhead et al. 1996, ...

Velocity of Hot Spot: ~ 0.1 c for ~ 20 CSOs

CORALZ(COmpact RA-dio sources at Low-Redshift): 10^{40} - 10^{42} erg/s

HFPs(high frequency peakers): $10^{43}-10^{45}$ erg/s

Gamma-Rays from Compact Radio AGNs

•Core of Seyfart 2 gal. NGC 1275 (M_{BH}=3*10⁸M_{sun})

- z=0.0176
- •Other radio bubbles (Pedler+91,

Fermi (>200MeV)

SSC Model

Long Term Evolution

Lobe Generation

(need further studies)

Radio Light Curve

Nagai+09, submitted

Hadronic Model for Compact Radio AGNs

Spectrum

Hadronic Contributions

SED of mini radio-lobe (t_age=t_inj)

Kino & Asano in prep

HESSJ 1616-508 (Matsumoto+07)

upper-limit ! F_{TeV}/F_X > 55

Electron Injection has been already stopped?

Pure Hadronic Case

