

Motivation...

What we did. . .

Results. . .

Conclusions.

Secondary content of the high energy cosmic ray electron spectrum

Jens Ruppel Ruhr–Universität Bochum

Meeting of working group:

Very high energy gamma rays, cosmic rays and neutrinos & hadronic AGN emission models

December 2008

Motivation...

What we did. . .

Results. . .

Conclusions. .

RUHR-UNIVERSITÄT BOCHUM

Motivation

H.E.S.S.–Paper:

The energy spectrum of cosmic-ray electrons at TeV energies

F. Aharonian^{1,13}, A.G. Akhperianian², U. Barres de Almeida⁸, * A.R. Bazer-Bachi³, B. Behera¹⁴, W. Benbow¹, K. Bernlöhr^{1,5}, C. Boisson⁶, A. Bochow¹, V. Borrel³, I. Braun¹, E. Brion⁷, J. Brucker¹⁶, P. Brun⁷, R. Bühler¹, T. Bulik²⁴, I. Büsching⁹, T. Boutelier¹⁷, S. Carrigan¹, P.M. Chadwick⁸, A. Charbonnier¹⁹, R.C.G. Chaves¹, A. Cheesebrough⁸, L.-M. Chounet¹⁰, A.C. Clapson¹, G, Coignet¹¹, L. Costamante^{1,29}, M. Dalton⁵, B. Degrange¹⁰, C. Deil¹, H.J. Dickinson⁸, A. Diannati-Atai¹², W. Domainko¹ LO'C, Drury¹³, F. Dubois¹¹, G. Dubus¹⁷, J. Dvks²⁴, M. Dvrda²⁸, K. Egberts¹, D. Emmanoulopoulos¹⁴, P. Espigat¹², C. Farnier¹⁵, F. Feinstein¹⁵, A. Fiasson¹⁵, A. Förster¹, G. Fontaine¹⁰, M. Füßling⁵, S. Gabici¹³, Y.A. Gallant¹⁵, L. Gérard¹², B. Giebels¹⁰ J.F. Glicenstein⁷, B. Glück¹⁶, P. Goret⁷, C. Hadiichristidis⁸, D. Hauser¹⁴, M. Hauser¹⁴, S. Heinz¹⁶, G. Heinzelmann⁴, G. Henri¹⁷ G, Hermann¹, J.A. Hinton^{25,‡} A. Hoffmann¹⁸, W. Hofmann¹, M. Holleran⁹, S. Hoppe¹, D. Horns⁴, A. Jacholkowska¹⁰, O.C. de Jager⁰, I. Jung¹⁶, K. Katarzyński²⁷, S. Kaufmann¹⁴, E. Kendziorra¹⁸, M. Kerschhaggl⁵, D. Khangulvan¹, B. Khélifi¹⁰, D. Keogh⁸ Nu, Komin¹⁵, K. Kosack¹, G. Lamanna¹¹, J.-P. Lenain⁶, T. Lohse⁵, V. Marandon¹², J.M. Martin⁶, O. Martineau-Huvnh¹⁰, A. Marcowith¹⁵, D. Maurin¹⁹, T.J.L. McComb⁸, C. Medina⁶, R. Moderski²⁴, E. Moulin⁷, M. Naumann-Godo¹⁰, M. de Naurois¹⁹, D. Nedbal²⁰, D. Nekrassov¹, J. Niemiec²⁸, S.J. Nolan⁸, S. Ohm¹, J-F. Olive³, E. de Oña Wilhelmi¹², K.J. Orford⁸, J.L. Osborne⁸ M. Ostrowski²³, M. Panter¹, G. Pedaletti¹⁴, G. Pelletier¹⁷, P.-O. Petrucci¹⁷, S. Pita¹², G. Pühlhofer¹⁴, M. Punch¹², A. Quirrenbach¹⁴, B.C. Raubenheimer⁹, M. Raue^{1,29}, S.M. Ravner⁸, M. Renaud¹, F. Rieger^{1,29}, J. Ripken⁴, L. Rob²⁰, S. Rosier-Lees¹¹, G. Rowell²⁶, B. Rudak²⁴, C.B. Rulten⁸, J. Ruppel²¹, V. Sahakian², A. Santangelo¹⁸, R. Schlickeiser²¹, F.M. Schöck¹⁶, R. Schröder²¹, U. Schwanke⁵ S. Schwarzburg¹⁸, S. Schwemmer¹⁴, A. Shalchi²¹, J.L. Skilton²⁵, H. Sol⁶, D. Spangler⁸, L. Stawarz²³, R. Steenkamp²², C. Stegmann¹⁶ G. Superina¹⁰, P.H. Tam¹⁴, J.-P. Tavernet¹⁹, R. Terrier¹², O. Tibolla¹⁴, C. van Eldik¹, G. Vasileiadis¹⁵, C. Venter⁹, J.P. Vialle¹¹, P. Vincent¹⁹, M. Vivier⁷, H.J. Völk¹, F. Volpe^{10,29}, S.J. Wagner¹⁴, M. Ward⁸, A.A. Zdziarski²⁴, and A. Zech⁶

Results. . .

Conclusions.

Measuring Cosmic Ray Electrons

arxiv.org/abs/0811.3894v1

only? \rightarrow *Difficult!*

How to measure CR electron flux

Measuring Cosmic Ray Electrons

arxiv.org/abs/0811.3894v1

Secondary Electrons

Motivation... What we did... Results...

Conclusions.

Measuring Cosmic Ray Electrons

Measuring Cosmic Ray Electrons

arxiv.org/abs/0811.3894v1

did. . .

Measuring Cosmic Ray Electrons

Secondary Electrons Motivation...

did. . .

Measuring Cosmic Ray Electrons

Questions:

Measuring Cosmic Ray Electrons

Questions:

Secondary electron fraction?

Measuring Cosmic Ray Electrons

Questions:

- Secondary electron fraction?
- What can we learn from this measurement?

Motivation...

What we did. . .

Results. . .

Conclusions.

RUHR-UNIVERSITÄT BOCHUM

How to find out...

Kelner, Aharonian, Bugayov (2006)

Simulation of p-p interaction with SIBYLL & QGSJET

Motivation...

What we did. . .

Results. . .

Conclusions. .

How to find out...

- Simulation of p-p interaction with SIBYLL & QGSJET
- Fit of analytical function $F_{\pi}(x_E, E_p)$ to simulated π and η -spectra

Motivation...

What we did...

Results. . .

Conclusions. .

How to find out...

- Simulation of p-p interaction with SIBYLL & QGSJET
- Fit of analytical function $F_{\pi}(x_E, E_p)$ to simulated π and η -spectra
- Error < 10% for $0.1 \,\mathrm{TeV} < E_p < 10^5 \,\mathrm{TeV}$

Motivation...

What we did. . .

Results. . .

Conclusions.

How to find out...

- Simulation of p-p interaction with SIBYLL & QGSJET
- Fit of analytical function $F_{\pi}(x_E, E_p)$ to simulated π and η -spectra
- Error < 10% for $0.1 \,\mathrm{TeV} < E_p < 10^5 \,\mathrm{TeV}$
- Numerical calculation of secondary spectra (γ , ν , e^{\pm} , ...)

Motivation...

What we did. . .

Results. . .

Conclusions.

How to find out...

- Simulation of p-p interaction with SIBYLL & QGSJET
- Fit of analytical function $F_{\pi}(x_E, E_p)$ to simulated π and η -spectra
- Error < 10% for $0.1 \,\mathrm{TeV} < E_p < 10^5 \,\mathrm{TeV}$
- Numerical calculation of secondary spectra (γ , ν , e^{\pm} , ...)
- Advantage of analytical approximation:

Motivation...

What we did. . .

Results. . .

Conclusions.

How to find out...

- Simulation of p-p interaction with SIBYLL & QGSJET
- Fit of analytical function $F_{\pi}(x_E, E_p)$ to simulated π and η -spectra
- Error < 10% for $0.1 \,\mathrm{TeV} < E_p < 10^5 \,\mathrm{TeV}$
- Numerical calculation of secondary spectra (γ , ν , e^{\pm} , ...)
- Advantage of analytical approximation:
 - Less CPU time

Motivation...

What we did. . .

Results. . .

Conclusions.

How to find out...

- Simulation of p-p interaction with SIBYLL & QGSJET
- Fit of analytical function $F_{\pi}(x_E, E_p)$ to simulated π and η -spectra
- Error < 10% for $0.1 \,\mathrm{TeV} < E_p < 10^5 \,\mathrm{TeV}$
- Numerical calculation of secondary spectra (γ , ν , e^{\pm} , ...)
- Advantage of analytical approximation:
 - Less CPU time
 - Better understanding of secondary characteristics

Motivation...

What we did. . .

Results. . .

Conclusions.

How to find out...

- Simulation of p-p interaction with SIBYLL & QGSJET
- Fit of analytical function $F_{\pi}(x_E, E_p)$ to simulated π and η -spectra
- Error < 10% for $0.1 \,\mathrm{TeV} < E_p < 10^5 \,\mathrm{TeV}$
- Numerical calculation of secondary spectra (γ , ν , e^{\pm} , ...)
- Advantage of analytical approximation:
 - Less CPU time
 - Better understanding of secondary characteristics
- Recently: p- γ interaction (Kelner, Aharonian (2008))

Motivation...

What we did. . .

Results. . .

Conclusions.

How to find out...

Kelner, Aharonian, Bugayov (2006)

- Simulation of p-p interaction with SIBYLL & QGSJET
- Fit of analytical function $F_{\pi}(x_E, E_p)$ to simulated π and η -spectra
- Error < 10% for $0.1 \,\mathrm{TeV} < E_p < 10^5 \,\mathrm{TeV}$
- Numerical calculation of secondary spectra (γ , ν , e^{\pm} , ...)
- Advantage of analytical approximation:
 - Less CPU time
 - Better understanding of secondary characteristics
- Recently: p-γ interaction (Kelner, Aharonian (2008))

Input: Proton spectrum, cross section, ...

Motivation...

What we did. . .

Results. . .

Conclusions.

How to find out...

Kelner, Aharonian, Bugayov (2006)

- Simulation of p-p interaction with SIBYLL & QGSJET
- Fit of analytical function $F_{\pi}(x_E, E_p)$ to simulated π and η -spectra
- Error < 10% for $0.1 \,\mathrm{TeV} < E_p < 10^5 \,\mathrm{TeV}$
- Numerical calculation of secondary spectra (γ , ν , e^{\pm} , ...)
- Advantage of analytical approximation:
 - Less CPU time
 - Better understanding of secondary characteristics
- Recently: p-γ interaction (Kelner, Aharonian (2008))

Input: Proton spectrum, cross section, ... **Output:** Secondary spectrum

Motivation. .

What we did. . .

Results. . .

Conclusions.

RUHR-UNIVERSITÄT BOCHUM

Cosmic Ray Electron Source Spectrum I

Input (following KAB2006):

Motivation. .

What we did...

Results. . .

Conclusions.

RUHR-UNIVERSITÄT BOCHUM

Cosmic Ray Electron Source Spectrum I

Input (following KAB2006):

Hadron Spectrum for $E < 4.4 \cdot 10^{15} \text{ eV}$ (Antoni et al. 2004):

Motivation. .

What we did. . .

Results. . .

Conclusions. .

Cosmic Ray Electron Source Spectrum I

Input (following KAB2006):

Hadron Spectrum for $E < 4.4 \cdot 10^{15} \text{ eV}$ (Antoni et al. 2004): $J(\vec{r}_{\odot}, \gamma_h) = N_0(\vec{r}_{\odot}) H(\gamma_h) \text{ with } [J] = \text{cm}^{-3} \text{ eV}^{-1}$

Motivation...

What we did. . .

Results. . .

Conclusions. .

Cosmic Ray Electron Source Spectrum I

Input (following KAB2006):

Hadron Spectrum for $E < 4.4 \cdot 10^{15} \text{ eV}$ (Antoni et al. 2004): $J(\vec{r}_{\odot}, \gamma_h) = N_0(\vec{r}_{\odot}) H(\gamma_h)$ with $[J] = \text{cm}^{-3} \text{ eV}^{-1}$ where $H(\gamma_h) = \gamma_h^{-2.78}$ $N_0(\vec{r}_{\odot}) = \frac{4\pi}{c} \left(\frac{3.44 \cdot 10^{16}}{\text{cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \text{ eV}^{-1}}\right) \left(\frac{m_p c^2}{\text{ eV}}\right)^{-2.78}$

Motivation...

What we did. . .

Results. . .

Conclusions. .

Cosmic Ray Electron Source Spectrum I

Input (following KAB2006):

Hadron Spectrum for $E < 4.4 \cdot 10^{15} \text{ eV}$ (Antoni et al. 2004): $J(\vec{r}_{\odot}, \gamma_h) = N_0(\vec{r}_{\odot}) H(\gamma_h)$ with $[J] = \text{cm}^{-3} \text{ eV}^{-1}$ where $H(\gamma_h) = \gamma_h^{-2.78}$ $N_0(\vec{r}_{\odot}) = \frac{4\pi}{c} \left(\frac{3.44 \cdot 10^{16}}{\text{cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \text{ eV}^{-1}}\right) \left(\frac{m_p c^2}{\text{ eV}}\right)^{-2.78}$

• Energies beyond the knee: $H(\gamma_h) \propto \gamma_h^{-3.14}$ (Watson 1991)

Motivation...

What we did. . .

Results. . .

Conclusions. .

Cosmic Ray Electron Source Spectrum I

Input (following KAB2006):

Hadron Spectrum for $E < 4.4 \cdot 10^{15} \text{ eV}$ (Antoni et al. 2004): $J(\vec{r}_{\odot}, \gamma_h) = N_0(\vec{r}_{\odot}) H(\gamma_h)$ with $[J] = \text{cm}^{-3} \text{ eV}^{-1}$ where $H(\gamma_h) = \gamma_h^{-2.78}$ $N_0(\vec{r}_{\odot}) = \frac{4\pi}{c} \left(\frac{3.44 \cdot 10^{16}}{\text{cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \text{ eV}^{-1}}\right) \left(\frac{m_p c^2}{\text{ eV}}\right)^{-2.78}$

• Energies beyond the knee: $H(\gamma_h) \propto \gamma_h^{-3.14}$ (Watson 1991)

Hadron-Hadron Cross Section:

Motivation...

What we did. . .

Results. . .

Conclusions. .

Н

Cosmic Ray Electron Source Spectrum I

Input (following KAB2006):

Hadron Spectrum for $E < 4.4 \cdot 10^{15} \text{ eV}$ (Antoni et al. 2004): $J(\vec{r}_{\odot}, \gamma_h) = N_0(\vec{r}_{\odot}) H(\gamma_h)$ with $[J] = \text{cm}^{-3} \text{ eV}^{-1}$ where $H(\gamma_h) = \gamma_h^{-2.78}$ $N_0(\vec{r}_{\odot}) = \frac{4\pi}{c} \left(\frac{3.44 \cdot 10^{16}}{\text{cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \text{ eV}^{-1}}\right) \left(\frac{m_p c^2}{\text{ eV}}\right)^{-2.78}$

• Energies beyond the knee: $H(\gamma_h) \propto \gamma_h^{-3.14}$ (Watson 1991)

ladron–Hadron Cross Section:

$$\sigma_{hh}^{\pi}(\gamma_h) = (34.3 + 1.88L + 0.25L^2) \left[1 - \left(\frac{E_{th}}{E_h}\right)^4 \right]^2 \text{ mb}$$
with $L = \ln(E_h/\text{TeV})$; $E_{th} = 1.22 \text{ GeV}$

Motivation. .

What we did...

Results. . .

Conclusions.

Cosmic Ray Electron Source Spectrum II

Interstellar gas density:

$$n(\vec{r}) = (1+x) n_H(\vec{r})$$
 with $x = n_e/n_H$

Motivation. .

What we did. . .

Results. . .

Conclusions.

Cosmic Ray Electron Source Spectrum II

Interstellar gas density:

$$n(\vec{r}) = (1+x) n_H(\vec{r})$$
 with $x = n_e/n_H$

Transfer Function For Secondary Electrons:

$$F_{e}(x_{E}, E_{h}) = B_{e} \frac{\left(1 + k_{e} \left(\ln x_{E}\right)^{2}\right)^{3}}{x_{E} \left(1 + 0.3 x_{E}^{-\beta_{e}}\right)} \left(-\ln x_{E}\right)^{2}$$

Motivation. .

What we did. . .

Results. . .

Conclusions.

Cosmic Ray Electron Source Spectrum II

Interstellar gas density:

$$n(\vec{r}) = (1+x) n_H(\vec{r})$$
 with $x = n_e/n_H$

Transfer Function For Secondary Electrons:

$$F_e(x_E, E_h) = B_e \frac{\left(1 + k_e \left(\ln x_E\right)^2\right)^3}{x_E \left(1 + 0.3 x_E^{-\beta_e}\right)} \left(-\ln x_E\right)^5$$

mit $B_e, \beta_e, k_e = f \left(\ln \left(E_h/1 \text{TeV}\right)\right)$
 $x_E = E_e/E_h$
 $E_h = const.$

Motivation. .

What we did. . .

Results. . .

Conclusions. .

Cosmic Ray Electron Source Spectrum II

Interstellar gas density:

$$n(\vec{r}) = (1+x) n_H(\vec{r})$$
 with $x = n_e/n_H$

Transfer Function For Secondary Electrons:

$$F_e(x_E, E_h) = B_e \frac{\left(1 + k_e \left(\ln x_E\right)^2\right)^3}{x_E \left(1 + 0.3 x_E^{-\beta_e}\right)} \left(-\ln x_E\right)^E}$$

mit $B_e, \beta_e, k_e = f \left(\ln \left(E_h/1\text{TeV}\right)\right)$
 $x_E = E_e/E_h$
 $E_h = const.$

$$\mathsf{Q}(\vec{r},\gamma) = 1.26\,\mathsf{N}_0(\vec{r}_\odot)\,\mathsf{n}(\vec{r})\,\mathsf{c}\int\limits_{\gamma}^{\infty}\frac{\mathsf{d}\gamma_\mathsf{h}}{\gamma_\mathsf{h}}\,\mathsf{F}_\mathsf{e}(\gamma,\gamma_\mathsf{h})\,\mathsf{H}(\gamma_\mathsf{h})\,\sigma_\mathsf{hh}^{\pi}(\gamma_\mathsf{h})$$

RUB, TPIV

Motivation. .

What we did. . .

Results. . .

Conclusions. .

Cosmic Ray Electron Source Spectrum II

Interstellar gas density:

$$n(\vec{r}) = (1+x) n_H(\vec{r})$$
 with $x = n_e/n_H$

Transfer Function For Secondary Electrons:

$$F_e(x_E, E_h) = B_e \frac{\left(1 + k_e \left(\ln x_E\right)^2\right)^3}{x_E \left(1 + 0.3 x_E^{-\beta_e}\right)} \left(-\ln x_E\right)^E}$$

mit $B_e, \beta_e, k_e = f \left(\ln \left(E_h/1\text{TeV}\right)\right)$
 $x_E = E_e/E_h$
 $E_h = const.$

$$\mathsf{Q}(\vec{r},\gamma) = 1.26\,\mathsf{N}_0(\vec{r}_\odot)\,\mathsf{n}(\vec{r})\,\mathsf{c}\int\limits_{\gamma}^{\infty}\frac{\mathsf{d}\gamma_\mathsf{h}}{\gamma_\mathsf{h}}\,\mathsf{F}_\mathsf{e}(\gamma,\gamma_\mathsf{h})\,\mathsf{H}(\gamma_\mathsf{h})\,\sigma_\mathsf{hh}^{\pi}(\gamma_\mathsf{h})$$

RUB, TPIV

Motivation. .

What we did. . .

Results. . .

Conclusions.

RUHR-UNIVERSITÄT BOCHUM

Energy Losses

Very-high energy cosmic ray electrons: $\Rightarrow T_{\text{energy loss}} = \gamma / |\dot{\gamma}| << T_{\text{confinement}} \quad \text{(for } E \gtrsim 1 - 10 \text{ GeV}\text{)}$

RUB, TPIV

Motivation...

What we did. . .

Results. . .

Conclusions. .

Energy Losses

Very-high energy cosmic ray electrons: $\Rightarrow T_{\text{energy loss}} = \gamma / |\dot{\gamma}| << T_{\text{confinement}} \quad \text{(for } E \gtrsim 1 - 10 \text{ GeV)}$

 \Rightarrow Galaxy \doteq thick target (Völk 1989)

Energy Losses

Very-high energy cosmic ray electrons: $\Rightarrow T_{\text{energy loss}} = \gamma / |\dot{\gamma}| << T_{\text{confinement}} \quad \text{(for } E \gtrsim 1 - 10 \text{ GeV)}$ $\Rightarrow \text{ Galaxy} \triangleq \text{thick target (Völk 1989)}$ Energy losses (taken from Pohl (1993)): $|\dot{\gamma}| = a_0 [1 + a_1 \gamma + a_2 \gamma^2] \quad \text{where } [\dot{\gamma}] = \text{s}^{-1}$

Secondary Electrons

Motivation...

What we did. . .

Results. . .

Conclusions. .

Energy Losses

Very-high energy cosmic ray electrons:

$$\Rightarrow T_{\text{energy loss}} = \gamma / |\dot{\gamma}| << T_{\text{confinement}} \quad (\text{for } E \gtrsim 1 - 10 \text{ GeV})$$

$$\Rightarrow \text{Galaxy} \triangleq \text{thick target (Völk 1989)}$$
Energy losses (taken from Pohl (1993)):

$$|\dot{\gamma}| = a_0[1 + a_1\gamma + a_2\gamma^2] \quad \text{where } [\dot{\gamma}] = \text{s}^{-1}$$
with $a_0 = 36.2 c \sigma_T n_H \tau$
 $a_1 = 1.4 \cdot 10^{-3} \eta \tau^{-1}$
 $a_2 = 7.2 \cdot 10^{-8} \epsilon \tau^{-1} (U_{\text{mag}}/\text{eV cm}^{-3}) (n_H/\text{cm}^{-3})^{-1}$
and $\epsilon = 3/4 + U_{\text{rad}}/U_{\text{mag}}$
 $\tau = 1 + 1.54 n_e/n_H$
 $\eta = 1 + 0.95 n_e/n_H$

Secondary Electrons Motivation. . What we did. . . Results. . . Conclusions.

Motivation. .

What we did. . .

Results. . .

Conclusions.

$$\Rightarrow |\dot{\gamma}| = 7.22 \cdot 10^{-13} n_H(\vec{r}) \Big[1 + 1.54 x + 1.4 \cdot 10^{-3} (1 + 0.95 x) \gamma + 7.2 \cdot 10^{-8} \frac{W(\vec{r})}{n_H(\vec{r})} \gamma^2 \Big]$$

with $W = 0.75 U_{\text{mag}} + U_{\text{rad}}$

Motivation. .

What we did. . .

Results. . .

Conclusions. .

$$\Rightarrow |\dot{\gamma}| = 7.22 \cdot 10^{-13} \, n_H(\vec{r}) \Big[1 + 1.54 \, x \\ + 1.4 \cdot 10^{-3} (1 + 0.95 \, x) \, \gamma + 7.2 \cdot 10^{-8} \, \frac{W(\vec{r})}{n_H(\vec{r})} \, \gamma^2 \Big]$$
with $W = 0.75 \, H_{\odot} = 1.4 \, x$

with $W=0.75~U_{
m mag}+U_{
m rad}$

Motivation.

What we did...

Results...

Conclusions. .

$$\Rightarrow |\dot{\gamma}| = 7.22 \cdot 10^{-13} \, n_H(\vec{r}) \Big[1 + 1.54 \, x \\ + 1.4 \cdot 10^{-3} (1 + 0.95 \, x) \, \gamma + 7.2 \cdot 10^{-8} \, \frac{W(\vec{r})}{n_H(\vec{r})} \, \gamma^2 \Big]$$

with $W=0.75~U_{
m mag}+U_{
m rad}$

Differential Equilibrium Electron Density

$$\Rightarrow N(\vec{r},\gamma) = |\dot{\gamma}|^{-1} \int_{\gamma}^{\infty} du \, Q(\vec{r},u)$$

Motivation. .

What we did...

Results. . .

Conclusions. .

$$\Rightarrow |\dot{\gamma}| = 7.22 \cdot 10^{-13} \, n_H(\vec{r}) \Big[1 + 1.54 \, x \\ + 1.4 \cdot 10^{-3} (1 + 0.95 \, x) \, \gamma + 7.2 \cdot 10^{-8} \, \frac{W(\vec{r})}{n_H(\vec{r})} \, \gamma^2 \Big]$$

with $W=0.75~U_{
m mag}+U_{
m rad}$

Differential Equilibrium Electron Density

$$\Rightarrow N(\vec{r},\gamma) = |\dot{\gamma}|^{-1} \int_{\gamma}^{\infty} du \, Q(\vec{r},u)$$

= 1.75 \cdot 10^{12} c N_0(\vec{r}_{\odot})(1+x) \Big[1 + 1.54 x
+1.4 \cdot 10^{-3}(1+0.95 x)\gamma + 7.2 \cdot 10^{-8} \frac{W(\vec{r})}{n_H(\vec{r})} \gamma^2 \Big]^{-1}
\times \int_{\gamma}^{\infty} du \int_{u}^{\infty} \frac{d\gamma_h}{\gamma_h} F_e(u,\gamma_h) H(\gamma_h) \sigma_{hh}^{\pi}(\gamma_h)

Motivation. .

What we did...

Results. . .

Conclusions. .

$$\Rightarrow |\dot{\gamma}| = 7.22 \cdot 10^{-13} \, n_H(\vec{r}) \Big[1 + 1.54 \, x \\ + 1.4 \cdot 10^{-3} (1 + 0.95 \, x) \, \gamma + 7.2 \cdot 10^{-8} \, \frac{W(\vec{r})}{n_H(\vec{r})} \, \gamma^2 \Big]$$

with $W=0.75~U_{
m mag}+U_{
m rad}$

Differential Equilibrium Electron Density

$$\Rightarrow N(\vec{r},\gamma) = |\dot{\gamma}|^{-1} \int_{\gamma}^{\infty} du \, Q(\vec{r},u)$$

$$= 1.75 \cdot 10^{12} \, c \, N_0(\vec{r}_{\odot})(1+x) \Big[1 + 1.54 \, x \\ + 1.4 \cdot 10^{-3} (1 + 0.95 \, x)\gamma + 7.2 \cdot 10^{-8} \, \frac{W(\vec{r})}{n_H(\vec{r})} \, \gamma^2 \Big]^{-1}$$

$$\times \int_{\gamma}^{\infty} du \int_{u}^{\infty} \frac{d\gamma_h}{\gamma_h} \, F_e(u,\gamma_h) \, H(\gamma_h) \, \sigma_{hh}^{\pi}(\gamma_h)$$

Cosmic Ray Electron Spectrum

RUB, TPIV

Jens Ruppel

Secondary Electrons

Results. . .

Conclusions...

Conclusions

► Cosmic ray electrons below 50 GeV might be secondaries.

Conclusions.

Conclusions

- ▶ Cosmic ray electrons below 50 GeV might be secondaries.
- Above this energy, the secondary fraction of the cosmic ray electrons is decreasing.

Conclusions...

- ► Cosmic ray electrons below 50 GeV might be secondaries.
- Above this energy, the secondary fraction of the cosmic ray electrons is decreasing.
- The energy density in local galactic photon fields is restricted to the range

$$1.05 \ \mathrm{eV cm^{-3}} \le U_{rad} \le 1.5 \ \mathrm{eV cm^{-3}}.$$

Conclusions...

Conclusions

- \blacktriangleright Cosmic ray electrons below 50 GeV might be secondaries.
- Above this energy, the secondary fraction of the cosmic ray electrons is decreasing.
- The energy density in local galactic photon fields is restricted to the range

$$1.05 \ \mathrm{eVcm^{-3}} \leq U_{rad} \leq 1.5 \ \mathrm{eVcm^{-3}}.$$

The observed excess of electrons above 50 GeV suggests the presence of a local source of primary cosmic ray electrons.

Results. . .

Conclusions.

Thanks for your attention!

Pamela vs. Other Data