

Estimation of neutrino spectra from AGNs using measured VHE γ-ray spectra

Garabed HALLADJIAN December 9th, 2008 γ-cr-v workshop, PARIS

9 December 2008

Presentation plan

Centre de Physique des Particules de Marseille

- Hypotheses & Aim
- Extra-Galactic Background Light (EBL)
 - Definition & characteristics
 - Interaction with VHE γ -rays
- Optical depth
 - Definition & Analyses
- Conversion of γ -ray energy spectrum to ν energy spectrum
- v energy spectra for 1ES1101-232
- v energy spectra index for different AGNs
- Questions

AGN

Intergalactic Space

9 December 2008

G. Halladjian

1. γ -rays & ν emitted by π^0 decay (p-p interaction)

1. γ -rays & ν emitted by π^0 decay (p-p interaction) 2. ν oscillation phenomena

- 1. γ -rays & ν emitted by π^0 decay (p-p interaction)
- 2. v oscillation phenomena
- 3. γ -rays absorption while they travel through space

- 1. γ -rays & ν emitted by π^0 decay (p-p interaction)
- 2. v oscillation phenomena
- 3. γ -rays absorption while they travel through space

- 1. γ -rays & ν emitted by π^0 decay (p-p interaction)
- 2. v oscillation phenomena
- 3. γ -rays absorption while they travel through space

- 1. γ -rays & ν emitted by π^0 decay (p-p interaction)
- 2. v oscillation phenomena
- 3. γ -rays absorption while they travel through space

- 1. γ -rays & ν emitted by π^0 decay (p-p interaction)
- 2. v oscillation phenomena
- 3. γ -rays absorption while they travel through space

Extra-Galactic Background Light (EBL)

- EBL is the light emitted from all objects in the Universe during its entire history
- It forms a diffused sea of photons that permeates intergalactic space

EBL (different experiments)

9 December 2008

G. Halladjian

EBL spectra (Upper & lower limits)

On Gamma Ray Burst and Blazar AGN Origins of the Ultra-High Energy Cosmic Rays in Light of First Results from Auger

Charles D. Dermer

Centre de Physique des Particule de Marseille

СР

9 December 2008

Optical depth τ

The optical depth expresses the quantity of light removed from a beam by scattering or absorption during its path through a medium. If I_0 is the intensity of radiation at the source and I is the observed intensity after a given path, then optical depth τ is defined by the following equation:

$$I = I_0 e^{-\tau}$$

Optical depth τ

$$\tau(E,z) = \int_{0}^{z} dz' \int_{-1}^{+1} d\mu \int_{\varepsilon'_{th}}^{\infty} d\varepsilon' \left[\frac{dl}{dz'} \times \frac{1-\mu}{2} \times n_{\varepsilon}(\varepsilon',z') \mathbf{i} \sigma_{\gamma\gamma}(E'_{\gamma},\varepsilon',\mu) \right]$$

$$\frac{dl}{dz} = \frac{R_H}{(1+z)\left\{(1+z)^2 \left(\Omega_m z + 1\right) + z \left(2+z\right)\left[\left(1+z\right)^2 \Omega_r - \Omega_A\right]\right\}^{1/2}} \\ \sigma\left(E, \varepsilon, \mu\right) = \frac{3\sigma_T}{16} \left(1-\beta^2\right) \left[2\beta\left(\beta^2-2\right) + \left(3-\beta^4\right)\ln\left(\frac{1+\beta}{1-\beta}\right)\right] \\ \beta = \sqrt{1-\frac{\varepsilon_{th}}{\varepsilon}} \qquad \varepsilon_{th}(E, \mu) = \frac{2m_e^2}{E(1-\mu)} \qquad \varepsilon_{th}^{'} = \varepsilon_{th}(E', \mu) \\ E' = E(1+z')$$

Simultaneous constraints on the spectrum of the extragalactic background light and the intrinsic TeV spectra of Mrk 421, Mrk 501, and H1426+428 Eli Dwek & Frank Krennrich

z = 0.186 Dec = -23°29'31" Vis = 0.632017

9 December 2008

Optical Depth τ

On Gamma Ray Burst and Blazar AGN Origins of the Ultra-High Energy Cosmic Rays in Light of First Results from Auger

Charles D. Dermer

Optical Depth τ

Optical Depth τ (z = 0.186)

Centre de Physique des Particules

de Marseille

CPE

9 December 2008

γ -ray spectra (Hess)

Hypothesis: TeV γ ray emission is dominated by the decay of π^{0} produced in **p**-**p** interactions

The following parameterization is for galactic sources

 $\frac{dN_{p}}{dE_{p}} = k_{p} \left(\frac{E_{p}}{1 \text{ TeV}}\right)^{-\Gamma_{p}} \exp\left(-\frac{E_{p}}{\varepsilon_{p}}\right) \qquad \qquad k_{v} \approx \left[0.71 - 0.16 \Gamma_{p}\right] k_{v}$ $\frac{dN_{v}}{dE_{v}} \approx k_{v} \left(\frac{E_{v}}{1 \text{ TeV}}\right)^{-\Gamma_{v}} \exp\left(-\sqrt{\frac{E_{v}}{\varepsilon_{v}}}\right) \qquad \qquad \varepsilon_{v} \approx 0.59 \varepsilon_{v} \approx \varepsilon_{p}/40$ $\frac{dN_{v}}{dE_{v}} \approx k_{v} \left(\frac{E_{v}}{1 \text{ TeV}}\right)^{-\Gamma_{v}} \exp\left(-\sqrt{\frac{E_{v}}{\varepsilon_{v}}}\right) \qquad \qquad \varepsilon_{v} \to \infty$

Potential Neutrino Signals from Galactic γ -Ray Sources (Aharonian & al.)

9 December 2008

G. Halladjian

Centre de Physique des Particules de Marseille

Y-ray spectra at EarthF=5.49541×10^{-13}
$$\left(\frac{E}{1 \ TeV}\right)^{-2.76} TeV^{-1} cm^{-2} s^{-1}$$
γ-ray spectra at source (HESS)F=5.88844×10^{-12} $\left(\frac{E}{1 \ TeV}\right)^{-1.5} TeV^{-1} cm^{-2} s^{-1}$ γ-ray spectra at source (example)F=7.24436×10^{-12} $\left(\frac{E}{1 \ TeV}\right)^{-1.41} TeV^{-1} cm^{-2} s^{-1}$ γ-ray spectra at source (upper limit)F=1.58489×10^{-11} $\left(\frac{E}{1 \ TeV}\right)^{-0.86} TeV^{-1} cm^{-2} s^{-1}$ γ-ray spectra at source (lower limit)F=3.98107×10^{-12} $\left(\frac{E}{1 \ TeV}\right)^{-1.81} TeV^{-1} cm^{-2} s^{-1}$

Y = 5.49541×10^{-13}
$$\left(\frac{E}{1 \ TeV}\right)^{-2.76} TeV^{-1} cm^{-2} s^{-1}$$
Y = 5.49541×10^{-13} $\left(\frac{E}{1 \ TeV}\right)^{-2.76} TeV^{-1} cm^{-2} s^{-1}$ Y = 2.67335×10^{-12} $\left(\frac{E}{1 \ TeV}\right)^{-1.5} TeV^{-1} cm^{-2} s^{-1}$ Y = 2.67335×10^{-12} $\left(\frac{E}{1 \ TeV}\right)^{-1.41} TeV^{-1} cm^{-2} s^{-1}$ Y = 3.39326×10^{-12} $\left(\frac{E}{1 \ TeV}\right)^{-1.41} TeV^{-1} cm^{-2} s^{-1}$ Y = 8.81835×10^{-12} $\left(\frac{E}{1 \ TeV}\right)^{-0.86} TeV^{-1} cm^{-2} s^{-1}$ Y = 8.81835×10^{-12} $\left(\frac{E}{1 \ TeV}\right)^{-1.81} TeV^{-1} cm^{-2} s^{-1}$ Y = 1.60995×10^{-12} $\left(\frac{E}{1 \ TeV}\right)^{-1.81} TeV^{-1} cm^{-2} s^{-1}$

Spectrum index

AGN	Z	Dec.	Γ _{Earth}	Γ _{min}	Г _{max}
1ES1101-232	0.186	-23º29'31''	-2.76	-1.81	-0.86
1ES0347-121	0.188	-11°59'27"	-2.82	-1.85	-0.87
PG1553+113	(0.35)	+11º11'24"	-4.41	-2.79	-1.37
1ES0229+200	0.14	+20°17'16"	-2.59	-1.88	-1.22
H2356-309	0.165	-30°37'22"	-3.08	-2.25	-1.55
PKS2155-304	0.116	-30°13'18"	-3.27	-2.65	-2.05
PKS2005-489	0.071	-48°49'19"	-3.59	-3.19	-2.81

- EBL correction:
 - $-\Gamma < 1.6$ is physical?
 - Other models for EBL?
- Internal absorption model? (is going on the good way for us)
- Conversion γ -ray flux to ν flux:
 - Need model of $p-\gamma$ may be use model developed for GRB in any case, what X-ray data will be used?

Thanks!