High energy neutrino astronomy Status - perspectives

D. Dornic (CPPM)

GDR PCHE Working group γ-cr-v - 2008/12/09

HE neutrinos?

HE neutrino : by-product of the interaction of HE cosmic rays

$$p + p(\gamma) \rightarrow \pi^{+i-} + X \qquad p + p(\gamma) \rightarrow \pi^{0} + X \\ \pi \rightarrow \mu + v_{\mu} \qquad \pi^{0} \rightarrow \gamma + \gamma \\ \mu \rightarrow e + v_{e} + v_{\mu}$$

Hadronic models: strong link between CR, TeV and X-ray photons

HE neutrinos?

HE neutrino : by-product of the interaction of HE cosmic rays

$$p + p(\gamma) \rightarrow \pi^{+i-} + X \qquad p + p(\gamma) \rightarrow \pi^{0} + X \\ \pi \rightarrow \mu + \nu_{\mu} \qquad \pi^{0} \rightarrow \gamma + \gamma \\ \mu \rightarrow e + \nu_{e} + \nu_{\mu}$$

Hadronic models: strong link between CR, TeV and X-ray photons

Astronomy: neutrino perfect messenger (in theory):

- Neutral (perfect pointing)

- Low interaction (Tracer of processes hidden to traditional astronomy in dense region, large horizon...)

→ Very difficult to detect (low reaction probability)

Detection principle

Neutrino signals

Detector sensible to the 3 neutrinos flavors

Muonic neutrino

Electronic neutrino

Background rejection

Atmospheric up-going neutrinos (CR interaction in the atmosphere)

HE neutrino detectors

BAIKAL: Lake Baikal, Siberia

AMANDA/ICECUBE, Antarctica

Visible sky

Complementarity between Northern detectors and the South Pole ones

Instantaneous common view: 0.5π sr Averaged common view : 1.5π sr

1st generation detector

Characteristics

Depth: 2000 - 2500m

12 strings separated by ~60m

900 optical modules

Performances

Angular resolution $\sim 0.3^{\circ}$ (E > 10 TeV) Seff $\sim 0.1 \text{ m}^2$ (10 TeV) $\sim 10 \text{ m}^2$ (10 PeV)

Characteristics

Depth: 1500 - 2000m

1000 ш

1150 ш

1500 ш

19 strings

677 optical modules

Performances

Angular resolution $\sim 2.5^{\circ}$ (E > 10 TeV)

AMANDA

120 ш

2000-200

AMANDA Results

AMANDA Results

Point-source study

Upper limit: $5 \times 10^{-11} E_v^{-2} TeV^{-1} . cm^{-2} . s^{-1} . sr^{-1}$ (Average over the Northern hemisphere)

95% of RA-randomized sky-maps have maximum significance > 3.38σ

AMANDA Results

The energy ranges shown are those which produce the central 90% of events in each analysis.

<u>ANTARES</u>: ~ 750 neutrino candidates (A5 and A10)

Point-source study

Sensitivity (5 lines)

Expected performances for the 12 line detector

Angular resolution

Expected sensitivity

 \sim 8 better resolution (\sim 60 better sensitivity)

2nd generation detector ~1 km³

KM3NeT

Characteristics

Not really defined

Performances

Angular resolution $\sim 0.2^{\circ}$ (E > 10 TeV) Seff $\sim 5 \text{ m}^2$ (10 TeV) $\sim 200 \text{ m}^2$ (10 PeV)

Characteristics

Depth: 1450 – 2450m

80 strings separated by 125m

4800 optical modules

Performances

Angular resolution $\sim 0.8^{\circ}$ (E > 10 TeV) Seff $\sim 10 \text{ m}^2$ (10 TeV) $\sim 300 \text{ m}^2$ (10 PeV)

IceCube status

IceCube results (IC22)

Zenith distribution and data-MC comparison

5114 neutrino candidates in 276 days lifetime

After the final cut:

IceCube results (IC40)

Pointing accuracy \rightarrow Moon shadow detection

Angular resolution

- IceCube 22 < 1.5°
- IceCube $80 < 1^{\circ}$

Preliminary

(3 month of IC40 data)

IceCube results (IC22)

Point-source study

Upper limit: $1.3 \times 10^{-11} E_v^{-2} TeV^{-1} . cm^{-2} . s^{-1} . sr^{-1}$ { > Factor 2 improvement compared to AMANDA

80 70 60 declination 50 -log, p 40 30 20 10 preliminary 180 right ascension 360 300 240 120 60

- · Unbinned likelihood method using energy information
- Hottest spot found at r.a. 153º , dec. 11º
- pre-trial p-value: 7×10⁻⁷ (4.8 sigma)

Sky map:

- Accounting for all trials, p-value for analysis is 1.34% (2.2 sigma).
- At this significance level, consistent with fluctuation of background.

KM3NeT design study

FP6 design study 2006-09 –

3 possible sites ANTARES: 2400m NEMO: 3500m NESTOR: 3700-5200m <u>3 structures tested in the design study:</u> Improved ANTARES line Improved NEMO tower "IceCube" string with Multi-PMTs 2 optical modules: Standard 8" PMT Multi-PMTs (31*3" per storey) 2 transmission systems: Hybrid copper / optic All optic

FP7 preparatory phase 2008-11

KM3NeT: expected performances

Based only on muon neutrino v_{μ} detection generated with a E⁻² spectrum

Point source

~ 3 more sensitive than IceCube (better photocathode area and better angular resolution)

Damien Dornic - KM3NeT ISVHECRI 2008 - 2008/09/04

Goal: enhance the discovery chance for neutrinos in case of correlations (lower detection threshold, lower the background contamination...)

"Special" neutrinos: Target of opportunity for others telescopes

Perfectly target for transient sources detection: GRB, SN, AGN flare, μ-quasar flares...

Use of multi-messenger method:

GRB studies: X-ray detection and neutrino NToO MAGIC / IceCube (TeV gamma-ray) Transient sources (optical follow-up) GW interferometers / Neutrino telescopes

GRB studies

Neutrino telescopes are client of the GCN

Special data taking (without filtering)

Optical follow-up observations after a trigger on neutrino alerts

- IceCube / ROTSE

- ANTARES / TAROT

(in preparation)

Optical follow-up observations after a trigger on neutrino alerts

- IceCube / ROTSE
- ANTARES / TAROT

+21:35:00.0

Optical follow-up observations after a trigger on neutrino alerts

- IceCube / ROTSE
- ANTARES / TAROT

AMANDA II result: 2 neutrinos coincident with a flare of 1ES1959+650 (HEGRA & Whipple) (not significant)

NToO between AMANDA II and MAGIC

Tested between 27th September to 27th November 2006

Search for flares of neutrinos in the sample of up-going events If compatible the position with a given list of blazar or μ -quasar sources \rightarrow Send an alert to the MAGIC

MAGIC will answered in the day (day/night)

Coincidence between gravitational wave interferometers (VIRGO – LIGO) and neutrino telescopes (ANTARES – IceCube)

Outlook - conclusions

Detector status:

- <u>ANTARES</u>: complete June 2008, 500 neutrinos recorded (A5-10) Very good angular resolution (0.3° at HE)
- <u>IceCube</u>: 40 strings already deployed, IC22 data analysis
 Very large effective area (~ 5 m² at 10 TeV, ~200 m² at PeV)

<u>Future:</u>

- *IceCube improvements*: deep-core (LE) or superIC (UHE)
- <u>KM3NeT</u>: design study is on the way (may be it will evolve with the IC result)

Multi-messenger approaches are essential to the neutrino telescopes

SNRs

Cherenkov telescopes:

Suppose an hadronic model, HE neutrinos flux can be derived from HE gamma spectrum:

 $pp(p\gamma) \rightarrow \pi^{\pm} , \pi^{\circ} , ...$ $\pi^{\pm} \rightarrow \mu v_{\mu} \rightarrow e v_{\mu} v_{\mu} v_{e}$

RXJ1713-3946: extended source ($\Phi \sim 1.3^{\circ}$) and ~75% of the time bellow the horizon \rightarrow in 5 years: 5 neutrinos for 15 background events (Possible background reduction by choosing only hot spots) Dornic et al, astro-ph/0711.2145

Kappes et al, astro-ph/0607286

Microquasars

Prediction for a NEMO detector:

Source name	Δt (days)	$\mathbf{f}_{v}^{\mathrm{th}}$ (erg/cm ² s)	$\mathbf{N}^{\mathbf{m}}_{\mu}$	b
Steady Sources				
LS 5039	365	1.69.10-12	0.1	0.1
Scorpius X-1	365	6.48·10 ⁻¹²	0.2	0.1
SS433	365	$1.72 \cdot 10^{-9}$	76.0	0.1
GX 339-4	365	1.26.10-9	68.0	0.1
Cygnus X-1	365	$1.88 \cdot 10^{-11}$	0.5	0.1
Bursting Sources			•	
XTE J1748-288	20	$3.07 \cdot 10^{-10}$	0.8	0.3
Cygnus X-3	3	4.02·10 ⁻⁹	0.8	0.1
GRO J1655-40	6	$7.37 \cdot 10^{-10}$	0.6	0.1
GRS 1915+105	6	$2.10 \cdot 10^{-10}$	0.1	< 0.1
Circinus X-1	4	$1.22 \cdot 10^{-10}$	0.1	0.1
XTE J1550-564	5	$2.00 \cdot 10^{-11}$	< 0.1	< 0.1
V4641 Sgr	0.3	$2.25 \cdot 10^{-10} \div 3.25 \cdot 10^{-8}$	$< 0.1 \div 1.4$	0.1
GS 1354-64	2.8	$1.88 \cdot 10^{-11}$	< 0.1	0.1
GRO J0422+32	1÷20	$2.51 \cdot 10^{-10}$	< 0.1÷0.4	0.1
XTE J1118+480	30÷150	$5.02 \cdot 10^{-10}$	1.0÷4.8	0.2

Distefano, astro-ph/07062993

AGNs

Recent Auger results on the correlation with nearby AGNs (z<0.018)

Neutrinos flux calculation from Cen A (4 Mpc):

Assuming that 2 CR detected in a window of 3.2°

Detected number of neutrinos: between 2 and several 10⁻³ event per year following different models

AGNs

Recent Auger results on the correlation with nearby AGNs (z<0.018)

Neutrinos flux calculation from Cen A (4 Mpc):

Assuming that 2 CR detected in a window of 3.2°

Detected number of neutrinos: between 2 and several 10⁻³ event per year following different models

Neutrinos flux calculation from few AGNs detected by HESS:

After correction of the ISM absorption (EBL), neutrino spectra calculation:

Very hard spectrum ($\Gamma < 1.8$)

Optimistic prediction

GRBs

If we suppose that CR are accelerated in jets, then they can interact with the burst X-ray photon (synchrotron from accelerated electrons)

 \rightarrow HE neutrinos production (> qq 10 TeV)

but very large incertitude on the model

 \rightarrow Contribution for the diffuse flux: few 10 neutrinos per year Slow jet model of core collapse SN seem very promising for neutrino detection

KM3NeT: from a concept to the realisation

Damien Dornic - GDR PCHE Working group γ -cr- $\sqrt{0}$