Self-force approach to EMRIs

Misao Sasaki
YITP, Kyoto University

1. MiSaTaQuWa force for radiation reaction

e $G^{\mu \nu}[g]=8 \pi G T{ }^{\mu \nu}$

$$
g_{\mu \nu}=g_{\mu \nu}^{(0)}+h_{\mu \nu}^{(1)}+h_{\mu \nu}^{(2)}+\cdots
$$

$\triangleleft M \gg \mu$
$\diamond v / c$ can be large

Energy-momentum of a point particle

$$
\boldsymbol{T}^{\mu \nu}(x)=\mu \int d \tau \dot{z}^{\mu} \dot{z}^{\prime} \frac{\delta^{4}(x-z(\tau))}{\sqrt{-g}} \quad\left(\dot{z}^{\mu}=\frac{d z^{\mu}}{d \tau}\right)
$$

Linear perturbation in μ

$$
\delta G^{\mu \nu}\left[\boldsymbol{h}^{(1)}\right]=8 \pi G \boldsymbol{T}^{(1) \mu \nu}
$$

$$
\begin{aligned}
& \boldsymbol{T}^{(1) \mu v}(x)=\mu \int d \\
& \text { ster variable } \zeta:
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{\zeta}=\boldsymbol{h}_{\mu \nu}^{(1)} \text { or }{ }_{s} \boldsymbol{\Psi}^{(1)} \quad\left({ }_{s} \boldsymbol{\Psi} \sim\right. \text { a component of Weyl tensor) } \\
& \boldsymbol{\zeta}=\sum_{l m} \phi_{l m}(t, r) Y_{l m}(\Omega) \\
& \quad \text { expanded in spherical (spheroidal) harmonics }
\end{aligned}
$$

$L[\boldsymbol{\zeta}]=S\left[\boldsymbol{T}^{(1)}\right] \quad$ Regge-Wheeler-Zerilli/Teukolsky eq.

From ζ, we can calculate:
> Waveform at infinity.
$>d E /\left.d t\right|_{G W}, d L_{z} /\left.d t\right|_{G W}$, etc. $\sim \boldsymbol{O}\left((\boldsymbol{G} \boldsymbol{\mu})^{2}\right)$
\Rightarrow the orbit deviates from a geodesic on $g^{(0)}$
How can we incorporate this deviation?
> Use $d E / d t \& d L_{z} / d t$ to determine the evolution of the orbital parameters.

But, this cannot predict the phase shift in orbit

We need to evaluate $d C / d t$ in the Kerr case.
C = Carter constant

- Evaluate self-force from $h_{\mu \nu}$ acting on the particle.

Self-force problem

For point particle,

$$
\begin{gathered}
\delta G^{\mu \nu}[\boldsymbol{h}]=8 \pi G \boldsymbol{T}^{\mu \nu} \Longrightarrow \boldsymbol{h}_{\mu v} \propto \frac{1}{|\boldsymbol{x}-\boldsymbol{z}(\boldsymbol{\tau})|} \\
\boldsymbol{h}_{\mu v}(x) \text { diverges at } \boldsymbol{x}^{\alpha}=\boldsymbol{z}^{\alpha}(\boldsymbol{\tau})
\end{gathered}
$$

- self-force (back-reaction) in a curved background:

$$
\underbrace{\mu \frac{D^{2} z^{\alpha}}{d \tau^{2}}=F^{\alpha}[h] \approx \mu \delta \Gamma_{\mu \nu}^{\alpha}[h] \dot{z}^{\mu} \dot{z}^{\nu}}_{\text {~ geodesic eq. on } \boldsymbol{g}^{(\mathbf{0})}+\boldsymbol{h}}=\mu \frac{1}{2}\left(h_{\mu ; \nu}^{\alpha}(x)+\ldots . .\right) \dot{z}^{\mu} \dot{z}^{\prime}
$$

- Breakdown of perturbation theory ?

Yes! \& No!

- Yes, because a point particle is ill-defined in GR. \leftrightarrow Mass is non-renormalizable in GR

$$
\lim _{r_{0} \rightarrow 0}\left(m_{\text {bare }}-\frac{G m_{\text {bare }}^{2}}{r_{0}}\right) \text { has no well-defined limit. }
$$

- No, because ${ }^{\exists}$ regular exact solution (BH) in GR. \leftrightarrow Mass renormalization is unnecessary
cf. EM theory: point particle exists \Longleftrightarrow mass is renormalizable

$$
m_{\text {phys }}=\lim _{r_{0} \rightarrow 0}\left(m_{\text {bare }}+\frac{e^{2}}{r_{0}}\right): \text { two parameters to tune the limit }
$$

Namely, in GR:

- Identify the point particle with a BH solution of mass μ

- Embed the BH geometry in the linearly perturbed
metric $\boldsymbol{g}_{\mu \nu}=\boldsymbol{g}_{\mu \nu}^{(0)}+\boldsymbol{h}_{\mu \nu}$: matching at $|x-z(\tau)| \gg G \mu$

Matched Asymptotic Expansion

Consider a point particle in the flat background

$$
\begin{align*}
& g_{\mu \nu}^{(0)}=\eta_{\mu \nu} \\
& h_{\mu \nu}(x)=\eta_{\mu \alpha} \eta_{\nu \beta} \frac{2 G \mu\left(2 \dot{z}^{\alpha} \dot{z}^{\beta}+\eta^{\alpha \beta}\right)}{\dot{z}^{0}\left|\vec{x}-\vec{z}\left(\tau_{\text {ret }}\right)\right|} ; \tag{z}
\end{align*}
$$

In the rest frame $\left\{X^{a}\right\}$ of the particle:

$$
h_{a b}(X)=\eta_{a c} \eta_{b d} \frac{2 G \mu\left(2 \dot{Z}^{c} \dot{Z}^{d}+\eta^{c d}\right)}{|\vec{X}|} ; \quad \dot{Z}^{a}=(1,0,0,0)
$$

This is just the Newtonian part of the Schwarzschild metric.
Thus a Schwarzschild BH of mass μ can be naturally matched to $\quad g_{\mu \nu}=g_{\mu \nu}^{(0)}+h_{\mu \nu} \quad$ at $|X| \gg G \mu$

EOM unchanged. No self-force correction to all orders in $\boldsymbol{G} \mu$

In General Curved Background:

- Hadamard decomposition of $\mathrm{G}_{(\text {ret })}$ in harmonic (Lorenz) gauge

$$
G_{(\text {rel } \alpha \beta}^{\mu \nu}(x, z)=\theta\left(x^{0}-z^{0}\right)\left[u_{\alpha \beta}^{\mu \nu} \delta(\sigma(x, z))-v_{\alpha \beta}^{\mu \nu} \theta(-\sigma(x, z))\right]
$$

$$
\sigma(x, z): \text { world interval between } x \text { and } z \quad\left(\sim \frac{1}{2}(x-z)^{2}\right)
$$

$$
h_{\text {(ret) }}^{\mu v}(x)=\mu \int d \tau G_{\text {(ret) } \alpha \beta}^{\mu v}(x, z(\tau)) \dot{z}^{\alpha} \dot{z}^{\beta} \quad x^{\alpha}
$$

$u^{\mu \nu}{ }_{\alpha \beta}$: direct part
$v^{\mu \nu}{ }_{\alpha \beta}$: tail part
$h_{\text {(ret) }}^{\mu v}(x)=h_{\text {(direct) }}^{\mu v}+h_{\text {(tail) }}^{\mu v}$
$h_{\text {(direct) }}^{\mu \nu}$ contains divergence
$v^{\mu \nu}{ }_{\alpha \beta}$ is a solution of source-free eq. but not $h_{\text {(tail) }}^{\mu v}$

- Matched asymptotic expansion

(external: valid at $|X| \gg G \mu$)
(internal: valid at $|X| \ll L$)
- coordinate transformation: $\boldsymbol{g}_{a b}(X)=\frac{\partial x^{\mu}}{\partial X^{a}} \frac{\partial x^{\nu}}{\partial X^{b}} \boldsymbol{g}_{\mu \nu}(x)$

$$
\begin{aligned}
& \sigma^{j \mu}(x, z(\tau))\left(\approx-\left(x^{\mu}-z^{\mu}\right)\right)=-\left(f_{i}^{\mu}(T) X^{i}+f_{i j}^{\mu}(T) X^{i} X^{j}+\ldots\right) \\
& \sigma^{j \mu}(x, z(\tau)) \bar{g}_{\mu \alpha}(x, z) \dot{z}^{\alpha}=\mathbf{0} ; \quad \bar{g}_{\mu \alpha}: \text { parallel transport bi-tensor }
\end{aligned}
$$

- identify $\boldsymbol{g}_{a b}$ with $\tilde{\boldsymbol{g}}_{a b}$ in the matching region.

Regularized Gravitational Self-force
'MiSaTaQuWa' force: (named by Eric Poisson)

$$
F^{\alpha}\left[h_{\text {(ail) }}(x)\right] \approx \frac{1}{2}\left(h_{\text {(ail) } \mu ; v}^{\alpha}(x)+\ldots\right) \dot{z}^{\mu} \dot{z}^{\nu}
$$

Mino, Sasaki and Tanaka ('97), Quinn and Wald (‘99)
Tail part of the metric perturbation

$$
h_{(\text {tail })}^{\mu v}(x) \approx \int_{-\infty}^{\tau(x)} d \tau^{\prime} v^{\mu v}{ }_{\alpha \beta}\left(x, z\left(\tau^{\prime}\right)\right) T^{\alpha \beta}\left(z\left(\tau^{\prime}\right)\right)
$$

Regularized self-force is determined by the tail part
E.O.M. with self-force $=$ geodesic on $g^{\mu \nu}+h_{(\text {tail })}^{\mu \nu}$

But $h_{\text {(tail) }}^{\mu \nu}(x)$ is NOT a solution of Einstein equations.
\Longrightarrow meaning of the metric $g^{\mu \nu}+h_{\text {(tail) }}^{\mu \nu}$ was unclear

- Detweiler - Whiting's S-R decomposition
(improved over "direct-tail" decomposition) PRD 67, 024025 (2003)

$$
\begin{aligned}
& G^{\text {ret }}(x, z)=2 \theta\left(x^{0}-z^{0}\right) G^{\text {sym }}(x, z) \\
& G^{\text {sym }}(x, z)=\frac{1}{8 \pi}[u(x, z) \delta(\sigma)-v(x, z) \theta(-\sigma)] \\
& G^{\mathrm{S}}(x, z)=G^{\text {sym }}(x, z)+\frac{1}{8 \pi} v(x, z)=\frac{1}{8 \pi}[u(x, z) \delta(\sigma)+v(x, z) \theta(\sigma)] \\
& h^{\mathrm{s}}(x)=\int d^{4} x^{\prime} \sqrt{-g} G^{\mathrm{S}}\left(x, x^{\prime}\right) T\left(x^{\prime}\right) \quad \text { :satisfies pert eqs. } \\
& G^{\mathrm{R}}(x, z)=G^{\text {ret }}(x, z)-G^{\mathrm{s}}(x, z)=\left(G^{\text {ret }}(x, z)-G^{\text {adv }}(x, z)\right)-\frac{1}{8 \pi} v(x, z) \\
& h^{\mathrm{R}}(x)=h^{\text {ret }}(x)-h^{\mathrm{s}}(x) \quad \text { satisfies source-free pert eqs. }
\end{aligned}
$$

$$
h^{\mathrm{R}}-h^{\text {tail }}=O\left((x-z)^{2}\right) \Longrightarrow \text { Both give the same force }
$$

EOM $=$ geodesic on $g_{\mu \nu}^{(0)}+h_{\mu \nu}^{\mathrm{R}} \longrightarrow \begin{gathered}\text { solution of (linearized) } \\ \text { vacuum Einstein eqs. }\end{gathered}$

2. Adiabatic approximation

Constants of motion for geodesics in Kerr
Kerr geometry:

$$
\begin{aligned}
d s^{2}= & -\left(1-\frac{2 M r}{\Sigma}\right) d t^{2}-\frac{4 M a r \sin ^{2} \theta}{\Sigma} d t d \phi+\frac{\Sigma}{\Delta} d r^{2}+\Sigma d \theta^{2} \\
& +\left(r^{2}+a^{2}+\frac{2 M a^{2} r}{\Sigma} \sin ^{2} \theta\right) \sin ^{2} \theta d \phi^{2}, \\
\Sigma= & r^{2}+a^{2} \cos ^{2} \theta, \quad \Delta=r^{2}-2 M r+a^{2} .
\end{aligned}
$$

Two Killing vectors and One Killing tensor:

$$
\begin{gathered}
\xi_{(t)}^{\mu}=(1,0,0,0), \quad \xi_{(\phi)}^{\mu}=(0,0,0,1), \quad K_{\mu \nu}=2 \Sigma l_{(\mu} n_{\nu)}+r^{2} g_{\mu \nu}, \\
l^{\mu}=\left(\frac{r^{2}+a^{2}}{\Delta}, 1,0, \frac{a}{\Delta}\right), \quad n^{\mu}=\frac{\Delta}{2 \Sigma}\left(\frac{r^{2}+a^{2}}{\Delta},-1,0, \frac{a}{\Delta}\right), \\
m^{\mu}=\frac{1}{\sqrt{2}(r+i a \cos \theta)}\left(i a \sin \theta, 0,1, \frac{i}{\sin \theta}\right) .
\end{gathered}
$$

Constants of motion:

$$
\begin{array}{ll}
E=-u^{\alpha} \xi_{\alpha}^{(t)} & L=u^{\alpha} \xi_{\alpha}^{(\phi)} \quad Q=K_{\alpha \beta} u^{\alpha} u^{\beta} \quad C \equiv Q-(a E-L)^{2} \\
\dot{Q}=\begin{array}{c}
K_{\alpha \beta ; \sigma} u^{\alpha} u^{\beta} u^{\sigma}=0 \\
\because K_{(\alpha \beta ; \sigma)}=0
\end{array} \leftarrow \text { definition of Killing tensor }
\end{array}
$$

Radiation reaction to the Carter constant

Schwarzschild_ "constants of motion" E, $L_{i} \Leftrightarrow$ Killing vector Conserved current for GW corresponding to Killing vector exists.

$$
\begin{aligned}
E_{G W} & =\int d \Sigma^{\mu} t_{\mu \nu}^{(G W)} \xi^{\nu} \\
\dot{E} & =-\dot{E}_{g w} \quad \text { In total, conservation law holds. }
\end{aligned}
$$

Kerr conserved quantities $E, L_{z} \Leftrightarrow$ Killing vector
Q Killing vector

$$
Q=C+\left(a E-L_{z}\right)^{2}=K_{\mu v} u^{\mu} u^{v}
$$

How can we evaluate $d Q / d t$?
Killing tensor

Adiabatic approximation

$$
T \ll \tau_{R R}
$$

T : orbital period, $\quad \tau_{R R}$: radiation reaction timescale

- At lowest order, the trajectory is given by a geodesic specified by E, L_{z}, Q (Carter const.).

We evaluate backreaction to E, L_{z}, Q by using radiative field rather than R field.

$$
\begin{aligned}
& \left\langle\frac{D}{d \tau} X\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} d \tau \frac{\partial X}{\partial u^{\alpha}} F^{\alpha}\left[h_{\mu \nu}^{(r a d)}\right] \\
& X=E, L_{z}, Q \quad h_{\mu \nu}^{(\text {rad })}=\frac{1}{2}\left[h_{\mu \nu}^{\text {ret })}-h_{\mu \nu}^{(a d v)}\right] \\
& G^{R, r e t} \rightarrow \frac{1}{2}\left(G^{R, r e t}-G^{R, a d v}\right)=\frac{1}{2}\left(G^{\text {ret }}-G^{a d v}\right) \equiv G^{\text {rad }}
\end{aligned}
$$

-Radiative field does not have divergence at the location of the particle.

$$
\begin{gathered}
G^{\text {rad }}=\frac{1}{2}\left(G^{\text {ret }}-G^{\text {adv }}\right) \\
\square G^{\text {adv }}=\square G^{\text {ret }}=\delta^{4}\left(x-x^{\prime}\right) \square \square G^{\text {rad }}=0
\end{gathered}
$$

For E and L_{z} the results are consistent with the balance argument. (shown by Gal'tsov '82)

- For Q, it was proved that the use of the radiative field gives the correct long time average. (shown by Mino '03)

Key: under a transformation

$$
(t, r, \theta, \phi) \rightarrow\left(c_{t}-t, r, \theta, c_{\phi}-\phi\right) \quad c_{t}, c_{\phi} \cdots \text { constants }
$$

every geodesic is transformed into itself
GPS (Geodesic Preserving Symmetry) transformation
Mino, PRD67:084027 (2003)

For a given bounded geodesic, one can find a point at which $d r / d t=d \theta / d t=0$, unless the r and θ periods are commensurable.

Set $t=\phi=0$ at this point.

GPS transformation:

$$
(t, r, \theta, \phi) \rightarrow\left(t^{\prime}, r^{\prime}, \theta^{\prime}, \phi^{\prime}\right)=(-t, r, \theta,-\phi)
$$

$$
\begin{align*}
& G^{r e t}\left(x^{\prime}, z^{\prime}\right)=G^{\text {adv }}(x, z) \\
& G^{a d v}\left(x^{\prime}, z^{\prime}\right)=G^{r e t}(x, z)
\end{align*}
$$

In terms of matrix notation,

$$
\begin{aligned}
& d \boldsymbol{x}(t)=-\boldsymbol{J} d \boldsymbol{x}(-t), \boldsymbol{u}(t)=\boldsymbol{J} \boldsymbol{u}(-t), \\
& \boldsymbol{h}^{(a d v)}(t)=\boldsymbol{J} \boldsymbol{h}^{(r e t)}(-t) \boldsymbol{J} \\
& \square \\
& \boldsymbol{F}^{(a d v)}(t)=-\boldsymbol{J} \boldsymbol{F}^{(r e t)}(-t) \\
& \dot{Q}^{(a d v)}(t)=2 \boldsymbol{u} \cdot \boldsymbol{K} \boldsymbol{F}^{(a d v)}(t)=-2 \boldsymbol{u} \cdot \boldsymbol{J} \boldsymbol{K} \boldsymbol{J} \boldsymbol{F}^{(r e t)}(-t) \\
& =-2 \boldsymbol{u} \cdot \boldsymbol{K} \boldsymbol{F}^{(r e t)}(-t)=-\dot{Q}^{(r e t)}(-t) \\
& (\boldsymbol{K}=\boldsymbol{J} \boldsymbol{K} \boldsymbol{J}) \\
& \left\langle\dot{Q}^{(a d v)}(t)\right\rangle=-\left\langle\dot{Q}^{(r e t)}(t)\right\rangle \\
& \Omega \\
& \left\langle\dot{Q}^{(r e t)}(t)\right\rangle=\frac{1}{2}\left(\left\langle\dot{Q}^{\text {ret })}(t)\right\rangle-\left\langle\dot{Q}^{(a d v)}(t)\right\rangle\right)=\left\langle\dot{Q}^{(r a d)}(t)\right\rangle
\end{aligned}
$$

$d Q / d t$ formula

Sago, Tanaka, Hikida \& Nakano ('05)
$\frac{d Q}{d \tau}=2 u^{\mu} K_{\mu \nu} f^{\nu}$

$$
f^{\alpha}=-\frac{1}{2}\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)\left(h_{\beta \gamma ; \delta}+h_{\beta \delta ; \gamma}-h_{\gamma \delta ; \beta}\right) u^{\gamma} u^{\delta}
$$

Introducing $\tilde{u}^{\mu}(x)$ which coincides with u^{μ} in the limit $x \rightarrow z(\tau)$

$$
\begin{array}{r}
\tilde{u}_{\alpha ; \beta}=\tilde{u}_{\beta ; \alpha} \quad K_{(\mu v ; \rho)}=0 \quad \square \quad \frac{\frac{d Q}{d \tau} \approx\left[K^{v}{ }_{\mu} \tilde{u}^{\mu} \partial_{\nu} \frac{\psi}{\Sigma}\right]_{x \rightarrow z(\lambda)}}{} \\
\psi \equiv h_{\alpha \beta} \tilde{u}^{\alpha} \tilde{u}^{\beta} \Sigma
\end{array}
$$

Or explicitly,

$$
\frac{d Q}{d \tau} \approx \int d \lambda\left[\left(-\frac{P(r)}{\Delta}\left(\left(r^{2}+a^{2}\right) \partial_{t}+a \partial_{\phi}\right)-\frac{d r}{d \lambda} \partial_{r}\right) \psi\right]_{x \rightarrow z(\lambda)}
$$

\exists expression as simple as $d E / d t$ by the balance argument?

Similarity between expressions for $d E / d t$ and $d Q / d t$

- Energy loss can be also evaluated from the self-force.

$$
\frac{d E}{d \tau} \approx\left[-\xi_{(t)}^{v} \partial_{\nu} \frac{\psi}{\Sigma}\right]_{x \rightarrow z(\lambda)} \Leftrightarrow \frac{d Q}{d \tau} \approx\left[K_{\mu}^{v} \tilde{u}^{\mu} \partial_{\nu} \frac{\psi}{\Sigma}\right]_{x \rightarrow z(\lambda)}
$$

- Formula obtained by the energy balance argument:

$$
\begin{array}{r}
\frac{d E}{d t} \approx-\sum_{l, m, \omega}\left|Z_{l, m, \omega}\right|^{2} \quad \frac{d L}{d t} \approx-\sum_{l, m, \omega} \frac{m}{\omega}\left|Z_{l, m, \omega}\right|^{2} \\
Z_{l, m, \omega} \approx \int\left[\bar{\Pi}^{\mu \nu} T_{\mu \nu}\right]_{x \rightarrow(\tau)} d \tau
\end{array}
$$

- $d Q / d t$ has a similar formula

$$
\begin{aligned}
& \frac{d Q}{d t} \approx-\sum_{l, m, \omega} \hat{Z}_{l, m, \omega} \overline{Z_{l, m, \omega}} \\
& {\left[\hat{Z}_{l, m, \omega} \approx \int \frac{d \tau}{-i \omega} K^{\rho}{ }_{\sigma} u^{\sigma}\left[\partial_{\rho}\left(\Pi^{\mu \nu} T_{\mu \nu}\right)\right]_{x \rightarrow 2(\tau)}\right.}
\end{aligned}
$$

Further simplification

- A remarkable property of the Kerr geodesic equation

$$
\left(\frac{d r}{d \lambda}\right)^{2}=R(r) \quad\left(\frac{d \theta}{d \lambda}\right)^{2}=\Theta(\theta) \quad d \lambda=d \tau / \Sigma \underset{\Sigma}{\cdots=r^{2}+a^{2} \cos ^{2} \theta}
$$

r - and θ-oscillations can be solved independently

$$
\begin{aligned}
& \frac{d t}{d \lambda}=-a\left(a E \sin ^{2} \theta-L\right)+\frac{r^{2}+a^{2}}{\Delta}\left[E\left(r^{2}+a^{2}\right)-a L\right] \quad \Delta=r^{2}-2 M r+c \\
& \frac{d \phi}{d \lambda}=-\left(a E-\frac{L}{\sin ^{2} \theta}\right)+\frac{a}{\Delta}\left[E\left(r^{2}+a^{2}\right)-a L\right] \\
& t(\lambda)=t^{(r)}+t^{(\theta)}+\left\langle\frac{d t}{4 \lambda}\right\rangle \lambda \quad \& \text { similar expression for } \phi(\lambda) \\
& \quad \begin{array}{l}
\text { periodic functions with periods } 2 \pi \Omega_{r}^{-1}, 2 \pi \Omega_{\theta}^{-1}
\end{array}
\end{aligned}
$$

Only discrete Fourier components arise:

$$
\omega=\omega_{m}^{n_{n}, n_{\theta}}=\langle d t / d \lambda\rangle^{-1}\left(m\langle d \phi / d \lambda\rangle+n_{r} \Omega_{r}+n_{\theta} \Omega_{\theta}\right)
$$

Final expression for $d Q / d t$

Sago, Tanaka, Hikida \& Nakano ('05)

$$
\begin{aligned}
&\left\langle\frac{d Q}{d t}\right\rangle=2\left\langle\frac{\left(r^{2}+a^{2}\right) P(r)}{\Delta}\right\rangle\left\langle\frac{d E}{d t}\right\rangle-2\left\langle\frac{a P(r)}{\Delta}\right\rangle\left\langle\frac{d L}{d t}\right\rangle+2 \sum_{l, m, n_{r}, n_{\theta}} \frac{n_{r} \Omega_{r}}{\omega}\left|Z_{l, m, \omega}\right| \\
& \omega=\omega\left(m, n_{r}, n_{\theta}\right) \sim m \Omega_{\phi}+n_{r} \tilde{\Omega}_{r}+n_{\theta} \tilde{\Omega}_{\theta} \quad P(r)=E\left(r^{2}+a^{2}\right)-a L
\end{aligned}
$$

orbital freq. in r \& θ directions
This expression is as easy to evaluate as $d E / d t$ and $d L / d t$.

$$
\left\langle\frac{d E}{d t}\right\rangle=-\sum_{l, m, n_{r}, n_{\theta}}\left|Z_{l, m, \omega}\right|^{2} \quad\left\langle\frac{d L}{d t}\right\rangle=-\sum_{l, m, n_{r}, n_{\theta}} \frac{m}{\omega}\left|Z_{l, m, \omega}\right|^{2}
$$

Analytic evaluation of $d E / d t, d L / d t$ and $d Q / d t$ for generic orbits has been done (Ganz et al., in prep.)

$d Q / d t$ to $O\left(v^{5} e^{2} y\right)$

Sago et al. ('05)

$$
\begin{aligned}
\left\langle\frac{d Q}{d t}\right\rangle= & -\frac{64}{5} \mu^{2} v^{6} \\
& \times\left[1-q v-\frac{743}{336} v^{2}-\left(\frac{1637}{336} q-4 \pi\right) v^{3}\right. \\
& +\left(\frac{439}{48} q^{2}-\frac{129193}{18144}-4 \pi q\right) v^{4}+\left(\frac{151765}{18144} q-\frac{4159}{672} \pi-\frac{33}{16} q^{3}\right) v^{5} \\
& +\left\{\frac{43}{8}-\frac{51}{8} q v-\frac{2425}{224} v^{2}-\left(\frac{14869}{224} q-\frac{337}{8} \pi\right) v^{3}\right. \\
& -\left(\frac{453601}{4536}-\frac{3631}{32} q^{2}+\frac{369}{8} \pi q\right) v^{4} \quad v=\sqrt{M / r_{0}} \\
& \left.+\left(\frac{14049}{9072} q-\frac{38029}{672} \pi-\frac{929}{32} q^{3}\right) v^{5}\right\} e^{2} \quad r_{0} \sim \text { mean radius } \\
& +\left\{\frac{1}{2} q v+\frac{1637}{672} q v^{3}-\left(\frac{1355}{96} q^{2}-2 \pi q\right) v^{4} \quad e \sim\right. \text { eccentricity } \\
& \left.-\left(\frac{151765}{36288} q-\frac{213}{32} q^{3}\right) v^{5}\right\} y \\
& +\left\{\frac{51}{16} q v+\frac{14869}{448} q v^{3}+\left(\frac{369}{16} \pi q-\frac{33257}{192} q^{2}\right) v^{4}\right. \\
& \left.\left.+\left(-\frac{141049}{18144} q+\frac{5981}{64} q^{3}\right) v^{5}\right\} e^{2} y\right] \\
q= & y=\frac{C}{L_{z}^{2}}=\frac{Q-\left(a E-L_{z}\right)^{2}}{L_{z}^{2}} \quad\left(\sim \frac{L_{x}^{2}+L_{y}^{2}}{L_{z}^{2}}\right)
\end{aligned}
$$

Summary

- BH perturbation is a useful tool to investigate EMRIs.
- MiSaTaQuWa force describes local gravitational reaction to an orbiting particle, but its explicit evaluation seems very difficult to do.
- Under adiabatic approximation, rate of change of energy, angular momentum and Carter constant can be evaluated by GW amplitudes at infinity and horizon.

