h(t) reconstruction and validation

Benoit Mours LAPP Annecy (IN2P3-CNRS)

Gravitational Wave Data Analysis Workshop IHP Paris

Outline

- Why do we need an h(t) reconstruction?
 - ♦ The controls
 - The time domain approach vs frequency domain
- Measuring the basic calibration factors
 - ♦ The actuators gain
 - ♦ The transfer function
- Building h(t)
 - Frequency dependence effect
 - Noise subtraction
- Validation
 - Comparing the sensitivity curves
 - The shot noise level
 - The photon calibrator
 - ♦ Hardware injection

Remark: use Virgo examples; work in progress: not final results

Virgo Optical Configuration

The control challenge

- Mirrors must be free test masses
 - \blacklozenge The free mirror motions is of several μ
- The ITF needs
 - ♦ The mirrors at the right place
 - » BS on the dark fringe
 - » Locked F.P. and recycling cavities

- Contradiction solved by the Locking strategy
 - Control the mirror at low frequency
 - Mirrors are free at high frequency
- \rightarrow Distortion of the dark fringe signal
- → Transfer Function (TF): Shape and Scale

Second Calibration task: correct the control effects

Handling the TF: Frequency domain approach

- A lot of analysis works in the frequency domain
 - Example: Match Filtering for Binaries

- Some others analysis use a narrow or high frequency band:
 - ◆ require a simple procedure
- Need to get the right TF: time dependent
 - Data base required...

Handling the TF: time domain approach

- Correct the error signal and produce a time series: h(t)
- No more need of a data base from the user
 - ♦ Use only one channel: h(t)
- Will allow a additional bonus:
 - ♦ Some noise subtraction is possible
- But before: needs to get all inputs for the corrections

Extracting the calibration parameters

1)The scale Need to push to mirror in a known way: Actuator gain: $1V \rightarrow X$ meters?

Mirror actuators

IHP, Nov 13, 2006

Actuator gain measurement: fringe counting

• Simple Michelson:

- ◆ Push the mirror over several fringes
- Extract gain from the DC power

Remark:

Time (s)

- need large displacement and a quite site
- Measure at low frequency

Open loop Michelson Reconstruction

Watt

Pr B1p ACp TIME

- Monitor the DC and AC signals ◆ AC signal is shifted by 90° from DC
 - Get the Power and the ITF contrast » $P_{DC} = P_{0DC}/2(1+C.\cos(2\pi\Delta L/\lambda))$

- Invert the Michelson equation
 - non linear process

- Get $\Delta L(t)$
- Absolute scale given by laser wavelength

34m5(

Using the Open loop Michelson

Typical Noise spectrum (WI-NE)

- Best sensitivity around 20-30Hz
 - ♦ No measurement above ~ 100 Hz

Another method: ITM fringe toggling

Fringe toggling analysis

Actuators gain: some challenges

- The actuators gains are measured:
 - ♦ At low frequencies ("DC")
 - » But used in a wider frequencies band
 - With large amplitude
 - » But used with lower signal (problem of the injected noise)
 - » Coil drivers have variable gain or frequency dependant responses ("whitening")
- Need to cross check the electronic
 - Measure to know the coil driver Transfer Function
- Need to pay attention to the mirror mechanical model
 - near the pendulum resonance (0.6Hz for Virgo)
 - mirror internal mode (kHz band)
- Not all mirror actuators directly measured
 - Some optical configuration makes the life more complicate
 - » signal recycling, high finesse
 - Need to transfer measurements from one mirror to another mirror
 - » Use for instance locked cavities with closed calibration lines on all mirrors

Extracting the calibration parameters

2)The shape Measuring the Transfer function

TF Measurement

Example of measured TF

- White noise applied on mirror
 - \Rightarrow Coherence typically between 30 and 700 Hz

Model used

- Use raw transfer function in frequency band with good coherence (<700 Hz)
- Use fit above 700 Hz
 - Optical response with 2 free parameters: gain & delay
 - ♦ Cavity pole kept fixed @ 500 Hz
 - » Finesse of cavities well known

$$-$$
 F_{North} = 49.0 ± 0.5

$$-F_{West} = 51 \pm 1$$

- Include:
 - » Anti-alias filter on photodiode signal
 - » Pendulum response
 - Actuator calibration !
- Ignore: locking filters (high freq.)

Sensitivity

• Apply measured & fitted TF to B1_ACp spectrum

- Remark: Calibrations done injecting noise on NE or WE give different sensitivities
 - ♦ At ~40% level
 - ♦ Assume 14 µm/V for actuators
 - » WE is probably 15% smaller
 - » Does not explain all of the difference
 - » Work in progress

Building h(t)

h(t) reconstruction with filter

• Problems:

- Complicated locking model (coupled loops)
- Need to follow the coupling coefficient (the TF shape change with time)
- End up with unstable filters

h(t) reconstruction using controls signals

- A locked ITF: ACp = demodulated signal at 0° ACq = demodulated signal at 90° Recvcling Modulation **Beam Splitter** mirror Lase Vο \sim 6.25 MHz B2_3f_ACp B1 ACp **Differential Mode** control loop • Dark fringe signal: B5 ACq Laser frequency stabilisation Dark fringe signal ◆ Free ITF + effect of the control signals ^{B5_ACp}
- Control signals are known
 - ◆ Their effect on the mirrors motion is simple
- Free ITF = Locked ITF control signal
 - + correction for the optical response (cavity filtering)
- Remark: this method remove some of the control noises

h(t) reconstruction details

- Remove locking effects from dark fringe signal
 - using mirror correction signal as locking effects measurements
 - need actuators TF (assuming $14\mu/V$) and optical TF for three mirrors
 - ♦ Track the optical gain with calibration lines
- Convert dark fringe to ΔL
 - need inverse optical TF (assume a 500 Hz cavity freq. cutoff)

Optical gains tracking

- Monitor calibration lines amplitude in dark fringe and correction signals
 - \Rightarrow Update the optical gains for BS, NE, WE using the 350 Hz lines
 - \Rightarrow The "100 Hz" lines are used as a monitor of the quality

- Remark: Calibration lines removed by reconstruction
 - \Rightarrow Remaining lines amplitude used as error estimators: ~10-15% in WSR1

Additional noise removal: 50Hz lines

- Power line frequency is monitor using an auxiliary channel
- Track the coupling coefficient and phase
- Subtract the power lines in the time domain

h(t) validation

- 1) Sensitivity vs reconstruction
- 2) Shot noise level
- 3) The photon calibrator
- 4) The hardware injection

Validation 1: Reconstruction vs Sensitivity

- Sensitivity from freq. domain calibration vs *h*(t) spectrum
- Limits of this comparison:
 - Sensitivities cannot be compared at exactly the same time
 - » Permanent lines needed for *h(t)* reconstruction are off when reference
 spectrum is measured
 - » Interferometer is non-stationary!
 - Sensitivities depend on different actuator gains
 - » Freq. domain: NE or WE depending on injection point
 - » h(t): average of NE and WE

IHP, Nov 13, 2006

Validation 2: shot noise level

• Noise budget driven by shot noise at high frequency

• Shot noise compute with

- Output photodiode power
- No actuator gain involved
- No optical gain involved

• Absolute cross check

Validation 3: The photon calibrator

- Principle: Push the mirror with the radiation pressure of an auxiliary laser beam
- Power modulation

Laser power and design sensitivity

• Needed power to reach Virgo sensitivity:

Photon calibrators

- In LIGO and GEO
 - ♦ in general agreement with the classical calibration
 - ♦ Work in progress to improve its systematic errors

Validation #4: Hardware injections

• Idea:

- Inject in the ITF known waveform
- Done by moving one of the uncontrolled mirror
 - » the h(t) reconstruction removed the control signals
- Check the recovered event

• Waveforms:

- Use different waveform
 - » Inspiral events sweep the frequency band!
- Sending pre-shaped voltages to mirror coils
- Takes into account electro-mechanical response
- ◆ Need to provide a smooth termination
- Normalized with the sensitivity measured before the run
 - Some changes could be expected
 - But distance should be recovered
- Check reconstruction and the "pipelines"

Exemple: C6 hardware injections

- 56 inspiral hardware injections
 - 4 different periods, [1.4,1.4] M_{\odot} , SNR ranging from ~15 to 25
- All detected
 - Check timing and mass estimation accuracy
 - Check SNR recovery

Summary

• h(t) is needed and produced routinely in Virgo

- Code running online
 - » Use to produce the online horizon
- ◆ Data are usually reprocess later on
- h(t) reconstruction provides some noise subtraction
- h(t) is the starting point for the Virgo data analysis
 - ◆ No other calibration parameters are provided
- Tools exist to validate the results
 - ◆ Work is in progress to use all of them