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* time dependent gravitational
fields come from the acceleration
of masses and propagate away
from thelr sources as a space-
time war page at the speed of light

®In the weak-field limit, linearize
the equation in “transver se-
traceless gauge”
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whereh_ isasmall perturbation of the space-time metric
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Gravitational waves

e Perturbation of space-time metric predicted by GR

e Compact binary inspiral: “chirps’
» neutron stars/ black holes

e Pulsarsin our galaxy: “periodic”
» GW from observed neutron stars

e Cosmological/astrophysical signals: “ stochastic”
» Early universe (like CMBR) or unresolved sources

e Supernovae/ GRBY BH mergerd.... “bursts’

» triggered — coincidence with GRB/neutrino detectors
» un-triggered — coincidence of GW detectors
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LSC Networ k of GW detectors

LIGO
Hanford

Livingston B

Nl

e Detection confidence — unlike instrumental/environmental
artifacts, GW signal are coincident in the detectors

e Reconstruction of GW waveforms and direction to the
source, which is not possible with a single GW detector.

e How to combine individual measurements?
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LIGO Sensitivity

Strain Sensitivities for the LIGO Interferometers
Best Performance for 54 LIGO-GO50230-02-E
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LIGO runs

Science Runs
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Wave frame
h+,hx

t detector

frame
X

y

e Direction to the source (,] and polarization angle Y define
relative orientation of the detector and wave frames.

e two GW polarizations: h =/(h, (t),h (t))
e Antenna patterns: F=IF.@,)F @, ))
e Detector response: x=F.h +F h =F ><ﬁ
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Detector response

e complex GW waveform

u(t) = h, (t) +ih, (t)
e Antenna pattern (assume polarization angle Y =0)

AL )= [F @) +iF, @0 )
e Detector response (~ - complex conjugate)
X =UA+TA
e Observable parameters are R,(Y) invariant

u® ue?y A® AE?
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LS(_:_ Detector Antenna Patterns

A:%(F++iFX)

e |A|]?forlLl — o
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Gravitational Waves
from Bursts Sources

e Any short transient of gravitational radiation (< few sec).

e Astrophysically motivated

» Un-modeled signals -- Gamma Ray Bursdts, ...
» Poorly modeled -- supernova, inspiral mergers,..
» Modeled — cosmic string cusps

e | N Most cases matched filterswill not work

e Characterize un-modeled bursts by
»characteristic frequency fc

»duration (dt) & bandwidth (df) & TF volume (dt X df)
»strain amplitude h,

h2e = i‘{hf (t) + h?(t) ot
Y,
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Inspiral Mergers

Compact binary mergers Sensitivity of LIGO to coalescing binaries
K. Thorne
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e massive BH-BH objects can be detected via merger and ring-down
e One of the most promising source to be detected with LIGO

e Recent progress in NR (see C.Lousto’s talk) will help to extract

iInformation about BH-BH dynamic when mergers are detected.
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Objectives of Burst Analysis

e |n most cases matched filtersdo not work
» need robust model independent detection algorithms

e Combine measurementsfrom several detectors
» handle arbitrary number of co-aligned and misaligned detectors
» confident detection, elimination of instrumental/environmental artifacts
» reconstruction of source coordinates
» reconstruction of GW waveforms
e Detection methods should account for
»variability of the detector responses as function of sour ce coordinates
»differencesin the strain sensitivity of detectors
e Extraction of source parameters
»confront measur ed wavefor ms with sour ce models
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Coincidence methods

e Apply (usually excess power) filter to a single detector stream
and record instances of time (triggers) when the data is
Inconsistent with the noise mode

»L SC: ExceessPower, WaveBur st, Q-transform, BlockNor mal,
KleineWdlle, ...
»Virgo: PowerFilter, ALF, EGC,...

e Reduce FA rate by coincidence of triggersin some time window
Rcoincidence =D Rl Rz

e Coincidence methods ar e successfully used in L1GO burst

sear ches, very convenient tool for detector studies, however

» sendgitivity may belimited by least sensitive detector

» do not reconstruct wavefor ms and sour ce coor dinates

» depend on selection of a coincidence window DT

» do not test “common origin” of waveformsin different detectors
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LSC Consistency Test of coincident events

eAretriggersdetected in different detectors consistent?

ePear son’ s correlation between two detector data streams:
r-statistic, Cadonati, CQG 22 S1159 (2005)

»can test a consistency of waveformsin the detector s, worksfor co-
aligned or closely aligned detectors

»effectivetool for FA reduction, successfully used in LIGO burst
sear ches

e Null stream: Schutzet al, CQG 22 S1321 (2005)

»construct linear combination of data streamswhere GW signal is
cancelled out. Rgect triggersif residual isnot consistent with the noise

»most straightforward isa null stream for co-aligned detectors:
P.Ajith et al, CQG 23 S741-S749 (2006) N(t) = x(t)- x,(t+t)

e Both methods can significantly reduce false alarm, but they
mainly work for co-aligned detectorsand do not addressthe
GW reconstruction.
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L1 GO burst searches

Abbot et al, PRD 69, 102001 (2004)

(Cadonati et al, CQG 21, S181 (2004))
for consistency test of triggers

e useWaveBurs al gonthm Abbot et al, PRD 72, 062001 (2005)
(Klimenko et al, CQG 21, S181 (2004)) SE IR I —
to generatetriggers = *°F 81
reconstructed in wavel et o 2 -t N —
(time-frequency) domain % = L r T
© S |
o useCorrPower algorithm &  'E

102 107 10718 1017 1076
hs [strain™NHz]

=0
Q
=

Set ratevs strength upper limit on generic GW bursts

S2: set limit on rate <0.26 events/day at 90% conf. level

HA. significant improvement in sendgitivity (x10), to be published soon
S5: sgignificant increase of lifetime (x10), analysisin progress
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Coherent network analysis

Combine data, not triggers; solve inverse problem of GW detection

Guersel, Tinto, PRD 40 v12,1989

» reconstruction of GW signal for a network of three misaligned detectors
Likelihood analysis: Flanagan, Hughes, PRD57 4577 (1998)

» likelihood analysis for a network of misaligned detectors

Two detector paradox: Mohanty et al, CQG 21 S1831 (2004)
» state a problem within likelihood analysis

Constraint likelihood: Klimenko et al, PRD 72, 122002 (2005)
» address problem of ill-conditioned network response matrix
» first introduction of likelihood constraints/regulators

Penalized likelihood: Mohanty et al, CQG 23 4799 (2006).
» likelihood regulator based on signal variability

Maximum entropy: Summerscales at al, to be published
» likelihood regulator based on maximum entropy

Rank deficiency of network matrix: Rakhmanov, CQG 23 S673 (2006)
» likelihood based in Tickhonov regularization

GW signal consistency: Chatterji et al, PRD 74 082005(2006)
» address problem of discrimination of instrumental/environmental bursts
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Likelthood Analysis for Bursts

Flanagan, Hughes, PRD57 4577 (1998)

L (x|u) = max, g!;ixw)g L(x|u) =- In[L (x|u)]

e For Gaussian noise with variance s? and templates u(Q), where
Q Is a parameter set. X, — detector outputs. x, — detector response

1

L(xIQ)=8 & 57 <00~ (0,01 Q]

e For unknown GW signal treat every sample of u(h+,hx)[i] as an
Independent variable—> find solution from variation of L

L(x|Q) b L(x]u)

e “Template search” in the limit of a large number of parameters
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D) \ariation of the likelihood functional

e Likelihood functional (time index i is omitted) u[i]=h[i]+ihi]
L(x|u) = & (uX +Tx)- %é (2uiip+u%G + i)

I
e Network data vector X[i]=§ X[ A,

"’ g2 k — detector
“ Index
e Network antenna patterns
2
=4 A =8
S k Sk
e find solutions for u by variation of L(x ] u)
dL dL X =pu+qu - pX[i]- oX]i
=0, S=0@ - ", = PX-oxll
du du X =pu+qu P”-qq
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Maximum Likelihood Ratio

e Replace u in L(x]u) with the solution u,

1 o =, ~ o 1 2
Lyir :Ea (UOX +UOX)» a > 2 <Xk>
i k k
» Ly.r IS a projection of u,on X
» 2Lk IS the network SNR

e Coherent/incoherent energy

o)
2L=a <Xi(t)xj (t+t ij)>Cij =E_, tE;,
]
» <x;x;> - Inner product of data vectorsx; and x;.

» 1,(q,f) isatimedelay between detectorsi&]
» diagonal terms— power, off-diagonal terms— correlation

e Likelihood analysisisvery elegant and consistent approach for
burst detection and reconstruction, but..
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Two detector paradox

] - . ] ] ] Mohanty et al, CQG 21 S1831 (2004)
e for S|mpI|C|ty assume unit noise variance

e aligned detectors (identical detector responses X ):

L= & x[i](x[i]+ xli]- x[i]) b x = Xl%xz
L= 3000)+ (00) 200,
). 2.5

power cross-correlation

» If separated = L, has directional sensitivity (circle on the sky) because
correlation term depends onqg andf.

e misaligned detectors:
» solution for GW waveform: X=X, X, =X

—1
L =3[(%. %)+ (% %,)]
e Likelihood method does not work for two misaligned detectors

No directional sensitivity even if detectors are infinitesimally
misaligned!
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Network response matrix

e Solution for GW waveforms satisfies the equations:
X = pu+qu

* Klimenko et al, PRD 72, 122002 (2005)
Re(X)u_ép+Re(q)  Im() ¥hu_ &0
dm(X)g & Ima) p- Re(qgh §i & §

e Network response matrix M, takes diagonal form in the
wave frame where Im(q)=0 (Fbomlnant Polarization frame)

y :gp+|ql 0 u_ & o =3 X
€0 plall T® e S

» g - network sensitivity factor
» e—network alignment factor

e Network has ill-conditioned matrix if €<<1
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Detection of two GW components

e h, &h, - solutions for GW polarizations in the DP frame

e For aligned detectors e =0 for any q and f

e For misaligned detectors e can be <<1 for significant area
INn the sky

e total network SNR
2L » Zg(<hf> +e<h22>): NR,,

<hf>, <h22> -sum-square energies of GW components

e if e=0 only component h, can be measured

e Even for networks with several misaligned detectors the
measurement of the second component not always
possible
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LSC), Network alignment factor

e=p-|ql/ p+|al B
. H1-L1 7
For aligned 2 1aa
network e=0 ¥ &g
e shows relative sensitivity "a CEEES
to two GW components 7 150
+GEO %ﬂlﬂ
E ad
2 2 a
L (< > + e<h >) d 104 20 310
u rll 2 = 1ad
-

-— 1dd

+VIRGOZE

d

to be detected with
the same SNR h,

should be 1/e times = 150
stronger then h, +TAMA§‘:Z

o=

d 1¢K] LK1 1

Fhl (d=g)
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Network sensitivity factor

H1-L1

g=p+|q|

= 150
X

NR = Zg(<hf> +e< 22>) o

+VIRGO# .o
need several a2

4| 1K1 Pl o | il
detectors for more

= 150 |

+TAMA Z 100

(1] E
= Eﬂ.

uniform sky coverage

I:]-'
d 161 LK1 14

S.Klimenko, November 16, 2006, Institut Henry Poilicac , rans, wuouous-uu-2 Fhl (d=g]




L1/H1/V1 network

‘e Significant fraction of the sky has ill-conditioned
network matrix

Y
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Q

theta, deg.
- -
A O
e o

Y
N
=]

Q
o_lll‘lll‘|||‘|||‘|F°"‘III‘III‘III

o
=]

o
o

B
=]

N
o

=]

theta, de

SKIMENKO, NC. e e ey i e,



Virtual Detectors

e Any network can be described astwo virtual detectors

g- phaseof g
detector output noise variance | network SNR
VD, Re(X[t]€ 92) g g(h?)
VD, Im(X[t]e 92) eg eg(h; )

e |n many casesonly VD, isavailable for measurements. VD, does

not contribute much if e<<1:

ca[ ) << o[}

e Solution: put constraints on measurement of the h, waveform.
» remove un-physical solutions produced by noise
» may sacrifice small fraction of GW signals but
» enhance detection efficiency for therest of sources

<> - average over source population
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Likelihood Constraints/Regulators

e regulators— source-model independent constraints

e SOft regulator - weight the second component according to the
networ k alignment factor (PRD 72, 122002 (2005))

Lo = Li(h) +e Ly(h,)

Simulated BH-BH merger (Lazarus) in L1/H1/G1 network

standard |Ike|lh00d constraint likelihood
—_—
.Il-. 'l-l: 1
150 150
S 1-‘- 0.8 a
Lik]
s
E 100 / '|,"I- 0.6 E 100
ik} 1k ]
£ Wiy 04 £
: 0.2
0 0
0 200 0 100 200 300

phl (deg) phi (deg)
e variousconstraintsare possible: hard, soft, entropy, Tickhonov
regulators, etc..
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LSC | Two detector sky maps

Constrained likelihood gives directional information

IN case of two detectors
H1-LL1 soft H1-G1  soft

150

—_
o
o

theta (deg)
theta (deg)

0 100 200 300 L LU AUt el
phi (deg) phi (deg)
reproduce solution Source at g=120, f =80

for aligned detectors
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Reconstruction of source coordinates

simulated DFM- § o
Al1B2G1 waveform at g
g=119, f =149, By
L1/H1/V1 “ [\
Sl m Ulated nO|Se, .9;9'5' S BT R Y RN TN R N T i.ﬁ:.i‘;n";".:iss

average SNR=160
per detector

Likelihood sky map
Signal detected at

g=118, f =149
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Reconstruction of burst waveforms

H1/H2 coincident magnetic glitch

< = hrss=2.4e-22
e If GW signal is detected, two ol ‘
polarizations and detector L,l |'H.f‘="“ 1!“["[]"1 ‘ mm,‘ W 1 " ”‘ ‘r"l“”‘“']']ll'l
responses can be reconstructed s ‘
and confronted with source b L1 time-shifted

mOdeIS for eXtraCtion Of the 8 I:—_4 705 4171 ' I4‘;7|_1I5I 4 72 I 4 725 4 73 I 4 735 4 7.4
source parameters i

hrss=4.5e-22

magnitude

e Figures show an example of -
LIGO glitch reconstructed with = black
the coherent WaveBurst event -f bandlimited TS recr%gstorhlscet}ed
display (A.Mercer et al.) p

I RSN [T S PR PR TI [V R T WA | — T, S E—
244.8 244.85 244.9 244.95 245 = 245.05 245 1

- powerful tool for consistency , .~ uwe

test of coherent triggers. T hrss 45622
e

[ Y S S [ SO TN S S T SUT SN SN (NN ST ST S NSRS S S NSt
2448 244.85 244.9 244.95 245 245.05 2451
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Coherent statistics

e Likelihood: estimator of network SNR - detection statistic

10, I
Zskz[xk[ll- (%[i1- %, [i]) ]
2L=E- N
yd 1

detected (signal)  total noise (null)
energy energy energy

e Individual statistics L, E,, N, for each detector are also available
e Likelihood matrix

2L=q (xx,)C, =E_ +E,,
-~ < J> j p j \J
Incoherent coherent
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sqri{2*likelihood/3) sqri(2*likelihood/3.)

e Likelihood statistic is designed to separate non-stationary
bursts from stationary Gaussian noise

Real data is dominated by glitches
The coherent statistics is a powerful tool to reject glitches

Consistency test for LIGO and LIGO-GEO data based on

» reconstructed burst energy in individual detectors
» network correlation
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Coincidence between detectors

e Coherent triggersare coincident in time (and frequency)
by construction - no coincidence window

e Define coincidence between detectors by applying threshold
at reconstructed ener gy E :<)§2>- N
» E, —reconstructed energy in i-th detector

» N. —detector null (noise) energy

e Optimal coincidence schemes can be selected after trigger
production
> dtrict: E,,+E ,+E >E,
» doubleOR: E,,+E,,>E; & E,,,+E >E; & E +E >E;

> loose: E,.+tE ,+E >E; (sameas2L>E;)
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correlation of misaligned detectors

e Pearson’s statistic E, <Xin>

® 2 2
\/E“ Ej \/<Xi >1<Xj >
any detectors two aligned detectors

e Cauchy’s statistic l

E; 2<x X >

C= ® > >

E-E, - E, (x2)+(x?)
» network correlation coefficient
O
E..
C = a ity ! — Ecoherent
net O
E - a Eii I\Iull T ECoherent
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Network correlation

e Distribution of the network correlation
coefficient for simulated bursts injected into
LIGO-Virgo simulated data (project 1b)

| NetBurst: sg235 | A2B4G1 |
2 I £ 0F
2 140 U S [ [Entries 563
@ B hcor @ sof Mean 0.8556
1200 Entries 1154 [ |RMS  0.1457
" |Mean 0.8442 N
- |RMS  0.1332 50
100
B 40—
60:— 30:_
a0l 20f-
20— 10
0:||,|,|,|,|||,n|pﬂ1|,|,|ﬂ D:||||||||||||||||||||-|mr1|—ﬂ||-|||-|—|||-|-| [ T
-1 -0.5 0 0.5 1 4 08 06 04 02 0 02 04 06 08 1
network x-correlation LHV network x-correlation
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Status of network analysis

e LSC burst group concentrates on development of
several aspects of network analysis

» application of constraint likelihood method to non-
hierarchical all sky searches, which are very CPU
Intensive. Coherent WaveBurst pipeline has been
Implemented and successfully used for analysis of
simulated LIGO-Virgo data, S4 and S5 data sets.

» follow up network analysis of triggers generated by
power filters (hierarchical searches)

» application of network analysis to externally triggered
searches

» development of network algorithms for rejection of
Instrumental/environmental glitches

» reconstruction of waveforms and extraction of source
parameters.
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Summary

Several GW detectors are now operating around theworld
forming a network

Coherent network analysis addr esses problems of detection
and reconstruction of GW signalswith detector networks

Likelihood methods provide a universal framework for burst
sear cheswith arbitrary networks of GW detectors

> likelthood ratio statistic is used for detection

» GW waveforms can bereconstructed from the data

» location of sourcesin the sky can be measured
» consistency test of eventsin different detectors

Constraints significantly improve the performance of coherent
algorithms

Coherent algorithmsare started to be used for burst searches
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