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Introduction

Inspiralling Compact Binaries (ICB) are considered to be the
most probable sources of detectable gravitational radiation
for laser interferometric gravitational-wave detectors. ICB
are usually modeled as point particles in quasi-circular orbits.

For long lived compact binaries, the quasi-circular
approximation is quite appropriate. Gravitational Radiation
Reaction (GRR) decreases the orbital eccentricity to
negligible values by the epoch the emitted gravitational
radiation enters the sensitive bandwidth of the
interferometers. For an isolated binary, the eccentricity goes
down roughly by a factor of three, when its semi-major axis is
halved since e/e0 = (a/a0)

19/12 - (Peters, 64)
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Eccentric Binaries
Based on Koenigdorffer and Gopakumar

Stellar-mass compact binaries in eccentric orbits are
excellent sources for LISA.

LISA will “hear” GW from intermediate-mass black holes
moving in highly eccentric orbits
K. Gültekin, M. C. Miller, and D. P. Hamilton (2005), T. Matsubayashi, J. Makino, and T. Ebisuzaki (2005),

M. A. Gürkan, J. M. Fregeau, and F. A. Rasio (2005)

Several papers indicate that SMBHB formed from
galactic mergers, may coalesce with orbital
eccentricity
S. J. Aarseth (2003), P. Berczik, D. Merritt, R. Spurzem, and H.-P. Bischof (2006), O. Blaes, M. H. Lee, and

A. Socrates( 2002), P. J. Armitage and P. Natarajan (2005), M. Iwasawa, Y. Funato, and J. Makino (2005)

These investigations employ different techniques and
astrophysical scenarios to reach the above conclusion.
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Kozai Mechanism

One proposed astrophysical scenario, involves hierarchical
triplets modeled to consist of an inner and an outer binary. If
the mutual inclination angle between the orbital planes of
the inner and of the outer binary is large enough, then the
time averaged tidal force on the inner binary may induce
oscillations in its eccentricity, known in the literature as the
Kozai mechanism
Kozai (1962),M. C. Miller and D. P. Hamilton (2002), E. B. Ford, B. Kozinsky, and F. A. Rasio (2000), Wen (2003)
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Kozai Mechanism, Globular Clusters

In globular clusters (GC), the inner binaries of
hierarchical triplets undergoing Kozai oscillations can
merge under GRR
M. C. Miller and D. P. Hamilton (2002).

A good fraction of such systems will have
eccentricity∼ 0.1, when emitted GW from these
binaries passes through 10Hz

Wen (2003).

Such scenarios involving compact eccentric binaries
are being suggested as potential GW sources for the
terrestrial GW detectors.
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NS-BH...GRB

During the late stages of BH–NS inspiral the binary can become
eccentric
M. B. Davies, A. J. Levan, and A. R. King (2005).
In general NS is not disrupted at the first phase of mass transfer and
what remains of NS is left on a wider eccentric orbit from where it
again inspirals back to the black hole. Scenario invoked to explain
the light curve of the short gamma-ray burst GRB 050911

Page (2006)

At least partly short GRBs are produced by the merger of NS–NS
binaries, formed in GC by exchange interactions involving compact
objects
J. Grindlay, S. P. Zwart, and S. McMillan, (2006)

A distinct feature of such binaries is that they have high
eccentricities at short orbital separation.
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Kicks, Eccentricity
Compact binaries that merge with some residual
eccentricities may be present in galaxies too.
Chaurasia and Bailes demonstrated that a natural
consequence of an asymmetric kick imparted to
neutron stars at birth is that the majority of NS–NS
binaries should possess highly eccentric orbits
H. K. Chaurasia and M. Bailes (2005).

Observed deficit of highly eccentric short-period
binary pulsars was attributed to selection effects in
pulsar surveys.

Conclusions are applicable to BH–NS and BH–BH
binaries.
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Compact star clusters
Yet another scenario that can create inspiralling
eccentric binaries with short periods involves
compact star clusters. It was noted that the
interplay between GW-induced dissipation and
stellar scattering in the presence of an
intermediate-mass black hole can create
short-period highly eccentric binaries
C. Hopman and T. Alexander (2005)

A very recent attempt to model realistically
compact clusters that are likely to be present in
galactic centers indicates that compact binaries
usually merge with eccentricities
G. Kupi, P. Amaro-Seoane, and R. Spurzem (2006),
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Implication of Eccentricity for GWDA
Martel Poisson

Investigated reduction in SNR if eccentric signals
are recd but searched for in data by circular
templates - nonoptimal signal processing

Found that for a binary system of given total mass,
the loss increases with increasing eccentricity

For a given eccentricity, loss decreases as total
mass is increased
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FF as fn of initial eccentricity e0

Martel and Poisson

e0 1.0 + 1.0 1.4 + 1.4 1.4 + 2.5 1.4 + 5.0 1.4 + 10 3.0 + 6.0 6.0 + 6.0 8.0 + 8.0

.00 0.998 0.997 0.999 0.998 0.998 0.998 0.998 .999

.05 0.960 0.976 0.985 0.992 0.992 0.998 0.996 .996

.10 0.898 0.931 0.947 0.965 0.976 0.984 0.993 .993

.15 0.836 0.879 0.902 0.930 0.946 0.961 0.975 .987

.20 0.762 0.822 0.854 0.893 0.913 0.934 0.955 .973

.25 0.695 0.761 0.802 0.852 0.885 0.903 0.930 .952

.30 0.630 0.637 0.749 0.805 0.850 0.868 0.900 .925

.35 0.569 0.581 0.693 0.753 0.811 0.829 0.867 .893

.40 0.513 0.520 0.635 0.698 0.765 0.783 0.827 .854

.45 0.454 0.460 0.574 0.637 0.714 0.732 0.781 –

.50 0.397 0.402 0.513 0.576 0.656 0.675 0.728 –

.55 0.348 0.350 0.452 0.513 0.595 0.614 – –

.60 0.297 0.303 0.396 0.452 0.534 – – –

.65 0.257 0.231 0.344 – – – – –
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Present Work

For binaries moving in general orbits, we compute all
the instantaneous contributions to the 3PN accurate
GW energy and angular momentum flux.

For binaries moving in elliptical orbits, hereditary terms
are computed exploiting the double periodicity of the
PN motion

Flux averaged over an elliptical orbit using 3PN
quasi-Keplerian parametrization of the binary’s orbital
motion by Memmesheimer, Gopakumar and Schäfer

Complete expressions for the far-zone energy flux from
inspiralling compact binaries moving in eccentric orbits.

Compute evolution of orbital elements ar, et, n under
3PN Grav Radn reaction (5.5PN terms in accn)
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Present Work

Represent GW from a binary evolving negligibly under
GRR including precisely upto 3PN order, the effects of
eccentricity and periastron precession during epochs
of inspiral when the orbital parameters are essentially
constant over a few orbital revolutions.

First step towards the discussion of the quasi-elliptical
case: the evolution of the binary in an elliptical orbit
under GRR
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The Generation Modules

Generation problem for GW at any PN order requires solution to two
independent problems

First relates to the equation of motion of the binary

3PN EOM for ICB on general orbits are complete
(Jaranowski, Schäfer; Blanchet, Faye; Damour, Jaranowski, Schäfer;
Blanchet, Damour, Esposito-Farèse);

Second to FZ fluxes of energy, angular momentum
(Present Work)

Latter requires the computation of the relativistic mass and current
multipole moments to appropriate PN orders.

Relevant multipoles including the 3PN Mass Quadrupole complete
for general orbits
Blanchet, Damour, Iyer, Esposito-Farèse; Present work

Unlike at earlier PN orders, the 3PN contribution to energy flux come
not only from the ‘instantaneous’ terms but also include ‘hereditary’
contributions arising from the tail of tails and tail-square terms.
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FZ flux - Radiative Multipoles

Following Thorne (1980), the expression for the 3PN accurate far
zone energy flux in terms of symmetric trace-free (STF) radiative
multipole moments read as
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PN order of Multipoles

For a given PN order only a finite number of Multipoles
contribute

At a given PN order the mass l-multipole is accompanied by
the current l − 1-multipole (Recall EM)

To go to a higher PN order Flux requires new higher order
l-multipoles and more importantly higher PN accuracy in the
known multipoles.

3PN Energy flux requires 3PN accurate Mass Quadrupole,
2PN accurate Mass Octupole, 2PN accurate Current
Quadrupole,........ N Mass 25-pole, Current 24-pole
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Radiative moments - Source moments

The relations connecting the different radiative moments UL and
VL to the corresponding source moments IL and JL are given
below. For the mass type moments we have (Blanchet 92.. 98)
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Radiative moments - Source moments
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Requires one to control the Reln of the Radiative Mass
Quadrupole to Source Mass Quadrupole to 3PN accuracy.
Hence involves Tail-of-Tails for Mass Quadrupole. Other multipoles
to lower PN accuracy involving only Tails
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Current-type moments

Vij(U) = J
(2)
ij (U) +

2GM

c3

∫ +∞

0

dτ

[

ln

(

cτ

2r0

)

+
7

6

]

J
(4)
ij (U − τ)

+O(5) ,

Vijk(U) = J
(3)
ijk(U) +

G

c3

{

2M

∫ +∞

0

dτ

[

ln

(

cτ

2r0

)

+
5

3

]

J
(5)
ijk(U − τ)

+
1

10
εab<iI

(5)
ja Ik>b −

1

2
εab<iI

(4)
ja I

(1)
k>b − 2J<iI

(4)
jk>

}

+O(4) .

UL(U) = I
(l)
L (U) + O(3) ,

VL(U) = J
(l)
L (U) + O(3) .

U = t−
ρ

c
−

2GM

c3
ln

(

ρ

c r0

)

.

BRI-IHP06-I – p.18/83



Instantaneous Terms
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Tail terms in the 3PN energy flux

Three kinds of hereditary terms appear in the
computation.

The ‘tails’ coming from the multipole interaction of the
mass quadrupole with the ADM mass (M × Iij),

‘Tails of tails’ due to the cubic nonlinear interaction
M ×M × Iij

Tail-squared term arising from quadrupole-quadrupole
interaction Iij × Ikl.

The hereditary terms in the energy flux can be written
as
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Tail terms in the 3PN energy flux
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Tail terms in the 3PN energy flux
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Constant scaling the logarithm has been chosen to be r0 to match with
the choice made in the computation of tails-of-tails in (Blanchet, 98). It
is a freely specifiable constant, entering the relation between the
retarded time U = T − R/c in radiative coordinates and the
corresponding time t − ρ/c in harmonic coordinates (where ρ is the
distance of the source in harmonic coordinates). More precisely we
have
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Hereditary Contributions

Multipole moments describing GW emitted by an
isolated system cannot evolve independently. They
couple to each other and with themselves, giving rise
to non-linear physical effects.

Instantaneous terms in the flux must be supplemented
by the contributions arising from these non-linear
multipole interactions.

Leading multipole interaction is between the mass
quadrupole moment Mij and the mass monopole M or
ADM mass. Associated with the non-linear effect of tails
at order 1.5PN.

Physically due to the backscatter of linear waves from
ST curvature generated by the mass monopole M .
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Hereditary Contributions

Detailed study of tails is due to Blanchet (1998) based
on the MPM formalism of Blanchet and Damour.
Showed that up to 3PN these comprise the dominant
quadratic order tails, the cubic-order tails or tails of tails
and the non-linear memory integral
Christodoulu 91, Will- Wiseman (1991), Thorne 92, Arun et al 04.

We set up a general theoretical framework to compute
the hereditary contributions for binaries moving in
elliptical orbits and apply it to evaluate all the tail
contributions contained in the 3PN accurate GW
energy flux.
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Instantaneous vs Hereditary Contributions

For instantaneous terms in the energy flux, explicit
closed form analytical expressions can be given in
terms of dynamical variables related to relative speed
v and relative separation r. These expressions can be
conveniently averaged in the time domain over an
orbit using its quasi-Keplerian representation.

For hereditary contribution one can only write down
formal analytical expressions as integrals over the past.
More explicit expressions in terms of the dynamical
variables require in addition a model of the binary’s
orbit to implement the integration over the past history.
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Hereditary Contributions - Circular orbits

In the circular orbit case, with a simplified model of
binary inspiral one can work directly in the time
domain. Eg Blanchet (1998) computed the hereditary
terms in the flux upto 3.5PN while Arun, Blanchet, Iyer
and Qusailah (2004) evaluated the GW polarisations
upto 2.5PN.

The tail integrals are evaluated using standard integrals
for a fixed non-decaying circular orbit. ‘Remote-past’
contribution to the tail integrals can be proved to be
negligible and errors due to inspiral by gravitation
radiation reaction to be at least 4PN.
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Hereditary Contributions - Elliptical Orbits
1.5PN

In the elliptic orbit case situation is more involved. Even
after using the quasi-Keplerian parametrization, one
cannot perform the integrals in the time domain (as for
the circular orbit case), since the multipole moments
have a more complicated dependence on time so
that the integrals are not analytically solvable in simple
closed forms.

By working in the Fourier domain to explicitly evaluate
the hereditary integrals, Blanchet and Schäfer (1993)
computed the hereditary tail terms at 1.5PN for
elliptical orbits using the lowest order Newtonian
Keplerian representation.
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Blanchet-Damour 88, Blanchet-Schäfer 93

GW tail only slightly sensitive to detailed dynamics of source
at early times under weak assumption of moderation of
wave emission in the past

Integrand of wave tail contains a log kernel that blows up at
past infinity and hence requires assumption on the source at
very early times..Eg second time derivative of MQ becomes
constant.. precludes a strong burst

Under the above assumptions, by splitting the tail integral
into a ‘remote past’ and ‘recent past’ integrals, using the 1/x

(x = (U − V )/T ) fall-off of the kernel in the remote past,
Blanchet and Schäfer obtain a convergent integal for each
Fourier component, independent of the constant T used to
split the integral.
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Blanchet-Damour 88, Blanchet-Schäfer 93

They then show, an important simplification is the possibility to
use for the tail computation a fixed orbit rather than a
decaying orbit (a Fourier series rather than a Fourier
transform)

Since the remote past contribution to the wave tail is small,
by choosing T to be the current value of the coalescing
time, only the recent past contribution is relevant

They also derive the same result using a different adiabatic
damping regularisation procedure

Explicitly show wave field for a decaying orbit can be
obtained by formal replacement of wave field at constant
frequency ω0 by varying frequency ω(U) and similarly for
phase (in limit 2π/ω0T → 0)
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Hereditary Terms - Elliptic Orbits (2.5PN and 3PN)
1PN Quasi-Keplerian Reprn

To tackle terms at 2.5PN and 3PN we need to go beyond the
(Newtonian) Keplerian representation to a 1PN quasi-Keplerian
representation of the orbit Damour and Deruelle (85,86). Then r and
` are expressed in terms of the eccentric anomaly u as

r = ar(1 − er cosu) ,

` = u − et sin u.

The phase angle φ is given by

φ = KV,

where the true anomaly V is defined by,

V = 2arctan
[(

1 + eφ

1 − eφ

)1/2

tan
u

2

]

.

The possible additive constant in the equation for φ is set equal to
zero.
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Quasi-Keplerian Reprn

K is the periastron advance such that the precession of the
periastron per period is ∆φ = 2π(K − 1). As K tends to one in
the limit c→ ∞ (Newtonian limits), it is convenient to
introduce k ≡ K − 1, to describe the relativistic precession.

1PN parametrization of the binary involves three kinds of
eccentricities (er, et and eφ) which makes the algebra more
involved.

More seriously at 1PN order, the periastron precession effect
appears in the problem and one has to contend with two
times scales: the orbital time scale and the periastron
precession time scale.
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Doubly-periodic structure of the solution

The phase is written as as

φ = φP +K`+W (`),

Periodic function W (`) reads

W = K (V − `) .

By doubly periodic one means that
the radial motion r(t) is periodic with period P

while the angular motion φ(t) is periodic (modulo 2π) with a
different period P/k.

Only when the two periods are commensurable i.e. k = 1/N

where N is a natural number is the motion periodic in space
(i.e. the orbit in space closed)
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Hereditary Terms - Elliptic Orbits - Procedure

Express all the multipole moments needed for the
hereditary computation at Newtonian order as discrete
Fourier series in l. For moments needed beyond the
lowest Newtonian order the double periodicity needs
to be crucially incorporated.

Evaluation of the Fourier coefficients is done either
numerically or in terms of an infinite sum of
combinations of Bessel functions.

All tail terms at 2.5PN and 3PN are completely
computed to provide the ‘enhancement factors’ for
binaries in elliptical orbits at the 2.5PN and 3PN orders,
extending classic work of Peters and Mathews
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Fourier decomposition of Mult Moments

Multipole moments of the CB system will be denoted by IL(t)

(mass-type moment) and JL(t) (current-type)

General structure of these mass and current moments, IL

and say JL−1 (where L− 1 is taken rather than L for
convenience), at any post-Newtonian order for a binary
system moving on a general non-circular orbit is of the type

IL(t) =
l

∑

p=0

Fp[r, ṙ
2, v2]x<i1···ipvip+1···il>,

JL−1(t) =

l−2
∑

p=0

Gp[r, ṙ
2, v2]x<i1···ipvip+1···il−2εil−1>abxavb,

where xi and vi are the relative position and velocity of the
two bodies, and the coefficients Fp and Gp depend on r, ṙ2
and v2 = ṙ2 + r2φ̇2.
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Fourier decomposition of Mult Moments

For quasi-elliptic motion in a plane, inserting x = r cosφ, y = r sin φ,
and vx = ṙ cosφ − rφ̇ sin φ, vy = ṙ sin φ + rφ̇ cosφ, we can explicitly
factorize out the dependence on the orbital phase φ.

Using the explicit solution of the motion one can express r, ṙ2 and v2,
and hence the Fp’s and Gp’s, as periodic function of the mean
anomaly ` = n(t − t0), where n = 2π/P .

General structure can be expressed in terms of the phase angle φ,
as the following finite sum over an index m ranging from −l to +l,

IL(t) =

l
∑

m=−l

A
(m)

L(`) eimφ,

JL−1(t) =

l
∑

m=−l

B
(m)

L−1(`) eimφ,

with some complex coefficients (m)AL and (m)BL−1.
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Fourier decomposition of Mult Moments

Important point for our purpose is that the functions (m)AL(`)

and (m)BL−1(`) are now 2π-periodic functions of `.

Structure of the mass and current moments is the same, but
the coefficients (m)AL and (m)BL−1 have a different parity,
because of the Levi-Civita symbol εiab entering the current
moment.

In above expressions, the variable φ is not a periodic function
of `.

To proceed further, we need to exploit the double periodicity
of the dynamics in the two variables λ = K` and ` by writing,
φ = K`+W (`), where W (`) is periodic in `

More convenient to single out in the expression of the phase
the purely relativistic precession of the periastron k`, where
k = K − 1. This yields many factors which will modify the
coefficients but in such a way that they remain periodic in `.
Hence we can write BRI-IHP06-I – p.36/83



Fourier decomposition of Mult Moments

IL(t) =

l
∑

m=−l

I
(m)

L(`) eimk`,

JL−1(t) =

l
∑

m=−l

J
(m)

L−1(`) eimk`.

This makes it possible to use a Fourier series expansion in the interval
[0, 2π] for each of the functions above leading then to the following
discrete Fourier decompositions,

IL(t) =

+∞
∑

p=−∞

l
∑

m=−l

I
(p,m)

L ei(p+mk)`,

JL−1(t) =

+∞
∑

p=−∞

l
∑

m=−l

J
(p,m)

L−1 ei(p+mk)`.
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Fourier decomposition of Mult Moments

We compute all the tail and tail-of-tail terms in the averaged GW
energy flux up to the 3PN order.

〈F〉 ≡ −〈
(

dE

dt

)GW

〉 ≡ −〈

(
∫

dΩ
dE

dt dΩ

)GW

〉,

Together with the instantaneous terms one obtains complete
expressions of the 3PN energy flux.

Tails are not just mathematical curiosities in general relativity but
facets that should show up in the GW signals of ICB and
subsequently decoded by the GW detectors like VIRGO, LIGO and
LISA
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Eccentricity enhancement factors

Define next some functions of the eccentricity by certain
Fourier series of the components of the Newtonian moments
IL = µx<L> and JL−1 = µx<L−2εil−1>abxavb for a Keplerian
ellipse with semi-major axis a, eccentricity e and frequency
n = 2π/P . Rescale the moments to adimensionalize them by
defining

ÎL ≡
I
(N)
L

µal
,

ĴL−1 ≡
J

(N)
L−1

µal n
.

Define some dimensionless Fourier series, which are functions
only of the (Keplerian) eccentricity e. First

f(e) =
1

16

+∞
∑

p=1

p6| Î
(p)

ij |
2,

BRI-IHP06-I – p.39/83



Eccentricity enhancement factors

Peters & Mathews “enhancement” function, entering the
energy flux at the Newtonian order (given by the Einstein
quadrupole formula), i.e.

FN =
32

5
ν2 x5f(e),

when computed using Fourier series. Remarkably f(e) admits
an algebraically closed-form expression, crucial for the
timing of the binary pulsar PSR 1913+16,

f(e) =
1 + 73

24e
2 + 37

96e
4

(1 − e2)7/2
.

f(e) is referred to as enhancement function since in the case
of the binary pulsar, with eccentricity e = 0.617 it enhances
the effect of the orbital Ṗ by a factor ∼ 11.843
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Eccentricity enhancement factors

Define several other eccentricity “enhancement” functions
which constitute useful ingredients when parametrizing the
tail terms at Newtonian order. Introduce,

ϕ(e) =
1

32

+∞
∑

p=1

p7| Î
(p)

ij |
2,

β(e) =
20

49209

+∞
∑

p=1

p9| Î
(p)

ijk|
2,

γ(e) = 4
+∞
∑

p=1

p7|Ĵ
(p)

ij |
2.

Like for f(e) these functions are defined s.t. they tend to one
in the circular orbit limit, when e→ 0. Unlike for f(e), they do
not admit closed-form expressions, and must be left in the
form of Fourier series.
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Eccentricity enhancement factors

Function ϕ(e) has already been computed numerically in
Blanchet Schäfer (1993).

Note ϕBS(e) = ϕ(e)/f(e). Here more convenient not to
rescale the various functions using the Peters & Mathews
“enhancement” function f(e). In their terms Newtonian tail
terms read

Fmass quad =
32

5
ν2 x13/2

{

4π ϕ(e)

}

,

Fmass oct =
32

5
ν2 x15/2

{

16403

2016
π β(e)

}

(1 − 4 ν),

Fcurr quad =
32

5
ν2 x15/2

{

1

18
π γ(e)

}

(1 − 4 ν),

Coefficient appropriate to the Newtonian expression of the
flux for circular orbits is factored out
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Eccentricity enhancement factors

Introduce two other enhancement functions which are
helpful when parametrizing the tail-of-tail and tail squared
integrals (Newtonian in the present approximation). Namely

F (e) =
1

64

+∞
∑

p=1

p8| Î
(p)

ij |
2,

χ(e) =
1

64

+∞
∑

p=1

p8 ln
(p

2

)

| Î
(p)

ij |
2.

Easily checked by a straightforward calculation à la Peters &
Mathews 63, that the function F (e) admits an analytic form
similar to the one of f(e) and given by

F (e) =
1 + 85

6 e
2 + 5171

192 e
4 + 1751

192 e
6 + 297

1024e
8

(1 − e2)13/2
.

BRI-IHP06-I – p.43/83



Eccentricity enhancement factors -χ(e)

χ(e) does not admit any analytic form, but is easily seen to
tend to zero when e→ 0.

At Newtonian order and in the circular orbit limit, the
quadrupole moment admits only one harmonic, which is the
one for which p = 2. Because of the logarithmic term in χ(e),
we see that the function is zero when e = 0.
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Enhancement Function F (e)
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Eccentricity enhancement factors

Thes figures shows the variation of χ(et) and F (et) with the
eccentricity et. The inset plot is the zoom for the functions
which look as straight horizontal lines in main graph. In the
top panel the points are the numerical computation for χ(et)

at et =0, 0.5, 1, 1.5,.... The solid lines are the fit to the
numerical points. In the bottom panel, the exact function of
F (et) is used. For the circular limit, et = 0, χ(0) = 0, F (0) = 1.

In terms of F (e) and χ(e), the sum of tail-of-tail and tail
squared contributions computed earlier reads

Ftail(tail)+(tail)2 =
32

5
ν2 x8

{[

−
116761

3675
+

16

3
π2 −

1712

105
C

−
1712

105
ln

(

4ωr0
c

)]

F (e) −
1712

105
χ(e)

}

.
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Eccentricity enhancement factors

Finally for the 1PN quadrupole tail the calculation is much
more complicated, as the Fourier series involve several
summations. In addition the computation must take into
account the 1PN relativistic correction in the quadrupole
moment (and ADM mass). There is no simple way to express
the new “enhancement” functions of eccentricity which
appear at the 1PN order.

One can check that the 1PN terms are a linear function of
the symmetric mass ratio ν. Introduce two enhancement
functions, denoted α and θ, s.t they are equal to one for
circular orbits. The functions are defined as

Fmass quad =
32

5
ν2 x13/2

{

4π ϕ(et) + π x
[

−
428

21
α(et) +

178

21
ν θ(et)

]

}

.

Computed only by a numerical calculation.

BRI-IHP06-I – p.47/83



Eccentricity enhancement factors

At 1PN order we must use a specific definition for the
eccentricity, and we adopted the eccentricity et. On the
other hand, the variable x = (mω)2/3 crucially incorporates
the 1PN relativistic correction coming from the periastron
advance K = 1 + k, through the definition ω = nK.
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Final expression of tail integrals

Finally provide the complete results for the dimensionless
enhancement factors and their numerical plots. Convenient
for the final presentation to redefine in a minor way some of
the enhancement functions by choosing

ψ(e) =
13696

8191
α(e) −

16403

24573
β(e) −

112

24573
γ(e),

ζ(e) = −
1424

4081
θ(e) +

16403

12243
β(e) +

16

1749
γ(e),

κ(e) = F (e) +
59920

116761
χ(e).

Considering the 1.5PN and 2.5PN terms, composed of tails,
and the 3PN terms, composed of tails of tails and tail
squared, the total hereditary contribution to the average of
the energy flux, normalized to the Newtonian value for
circular orbits finally reads
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Final expression of tail integrals

F3PN
tail =

32

5
ν2 x5

{

4π x3/2 ϕ(et) + π x5/2

[

−
8191

672
ψ(et) −

583

24
ν ζ(et)

]

+x3

[

−
116761

3675
κ(et) +

[

16

3
π2 −

1712

105
C −

1712

105
ln

(

4ωr0
c

)]

F (et)

]}

.

All the enhancement functions are defined in such a way
that they reduce to one in the circular case, et = 0, so that
the circular-limit of the formula is immediately seen from
inspection and seen to be in complete agreement with
Blanchet (98), Blanchet, Iyer Joguet (02)

There are four enhancement functions which probably do
not admit any analytic closed-form expressions: these are
ϕ(et), ψ(et), θ(et) and κ(et).
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Final expression of tail integrals

Only F (et) is known analytically, recall here its expression,

F (et) =
1 + 85

6 e
2
t + 5171

192 e
4
t + 1751

192 e
6
t + 297

1024e
8
t

(1 − e2t )
13/2

.

The numerical plots of the four enhancement functions ϕ(et),
ψ(et), θ(et) and κ(et) displaying the plots of all these
enhancement functions as functions of eccentricity et.

Figures shows the variation of α(et), β(et), γ(et), θ(et), φ(et),
ψ(et), ζ(et) and κ(et) with the eccentricity et. The inset is the
zoom for the functions which look like straight horizontal lines
in main graph. The dots are the numerical computation for
the functions at et =0, 0.5, 1, 1.5,.... The solid lines are the fit to
the numerical points. At the circular limit, et = 0,
α(0) = β(0) = γ(0) = θ(0) = φ(0) = ψ(0) = ζ(0) = κ(0) = 1.
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Enhancement Fn α(et)

BRI-IHP06-I – p.52/83



Enhancement Fn β(et)
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Enhancement Fn γ(et)
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Enhancement Fn θ(et)
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Enhancement Fn ϕ(et)
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Enhancement Fn ψ(et)

BRI-IHP06-I – p.57/83



Enhancement Fn ζ(et)

(Figure Label: θ′ ≡ ζ)
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Enhancement Fn κ(et)

BRI-IHP06-I – p.59/83



3PN Instantaneous Terms

The Instantaneous terms can be computed by a
straightforward procedure in Standard harmonic coordinates
in which our generation problem is set up

These coordinates have some gauge dependent logarithms

The computation of orbital averages requires the use of a
GQKR representation at 3PN which is available in two
gauges without the log terms - Modified Harmonic coords or
ADM coordinates

By a transformation of coords one can rewrite our fluxes in
either of the coordinates and then average them by use of
standard integrals involving Legendre functions
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3PN generalised Quasi-Keplerian reprn

r = ar (1 − er cosu) ,

l ≡ n (t− t0) = u− et sinu+
(g4t

c4
+
g6t

c6

)

(V − u)

+

(

f4t

c4
+
f6t

c6

)

sinV +
i6t

c6
sin 2V +

h6t

c6
sin 3V ,

2π

Φ
(φ− φ0) = V +

(

f4φ

c4
+
f6φ

c6

)

sin 2V +
(g4φ

c4
+
g6φ

c6

)

sin 3V

+
i6φ

c6
sin 4V +

h6φ

c6
sin 5V ,

where, V = 2 arctan

[(

1 + eφ

1 − eφ

)1/2

tan
u

2

]

.

3PN parametrization of the orbital motion of the binary was con-
structed by Memmeshiemer, Gopakumar and Schäfer (2004) in
both ADM and modified harmonic coordinates.
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Orbit Averaged Energy Flux - ADM (x, et)

x =

(

Gmn(1 + k)

c3

)2/3

< Ė >ADM =
32ν2x5

5

1

(1 − e2
t )

7/2

(

< ĖN >ADM +x < Ė1PN >ADM

+x2 < Ė2PN >ADM +x3 < Ė3PN >ADM

)

.

< ĖN >ADM = 1 + e2
t
73

24
+ e4

t
37

96

< Ė1PN >ADM =
1

(1 − e2
t )

{((

−
1247

336
−

35

12
ν
)

+ e2
t

(

10475

672
−

1081

36
ν
)

+e4
t

(

10043

384
−

311

12
ν
)

+ e6
t

(

2179

1792
−

851

576
ν
))}

BRI-IHP06-I – p.62/83



Orbit Averaged Energy Flux - ADM

< Ė2PN >ADM =
1

(1 − e2
t )

2

{

−
203471

9072
+

12799

504
ν +

65

18
ν2 + e2

t

(

−
3866543

18144
+

4691

2016
ν +

5935

54
ν2

)

+e4
t

(

−
369751

24192
−

3039083

8064
ν +

247805

864
ν2

)

+e6
t

(

1302443

16128
−

215077

1344
ν +

185305

1728
ν2

)

+e8
t

(

86567

64512
−

9769

4608
ν +

21275

6912
ν2

)

+
√

1 − e2
t

[

35

2
− 7ν + e2

t

(

6425

48
−

1285

24
ν
)

+e4
t

(

5065

64
−

1013

32
ν
)

+ e6
t

(

185

96
−

37

48
ν
)]}
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Orbit Averaged Energy Flux - ADM

< Ė3PN >ADM =
1

(

1 − e2
t

)3

{ 1266161801

9979200
+

[ 8009293

54432
−

41

64
π2

]

ν −
94403

3024
ν2 −

775

324
ν3

+e2
t

( 27685797767

19958400
+

[ 249108317

108864
+

31255

1536
π2

]

ν +
133487

6048
ν2 −

53696

243
ν3

)

+e
4
t

( 5135886353

3326400
+

[ 473750339

108864
−

7459

1024
π
2
]

ν +
1305967

576
ν
2

−
10816087

7776
ν
3
)

+e6
t

( 352339259

492800
+

[

−
8775247

145152
−

78285

4096
π2

]

ν +
34228207

12096
ν2 −

983251

648
ν3

)

+e8
t

( 21840664301

141926400
+

[

−
36646949

129024
−

4059

4096
π2

]

ν +
86104369

193536
ν2 −

4586539

15552
ν3

)

+e10
t

(

−
8977637

11354112
+

9287

48384
ν +

8977

55296
ν2 −

567617

124416
ν3

)

+

√

1 − e2
t

[(

−
165761

1008
+

287

192
π2

)

ν + e2
t

(

−
14935421

6048
+

52685

4608
π2

)

ν

+e
4
t

(

−
31082483

8064
+

41533

6144
π
2
)

ν + e
6
t

(

−
40922933

48384
+

1517

9216
π
2
)

ν

+e8
t

(

−
1073

288
ν

)]

+

( 1712

105
+

14552

63
e2

t +
553297

1260
e4

t +
187357

1260
e6

t

+
10593

2240
e8

t

)

ln

[

(

c2 r0

Gm
x

)

1 +

√

1 − e2
t

2

(

1 − e2
t

)

]}
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Comments

No 2.5PN term in the energy flux after averaging.

Circular orbit limit as expected is in agreement with BIJ

Newtonian and 1PN orders have the same form in Mhar
coords and ADM coordinates because two coordinates
differ starting only at 2PN.

et in the above expression represents eADM
t , the time

eccentricity in ADM coordinates.

Checks involving cancellation of gauge dependent logs and
logs related to regularisation at infinity involving the
instantaneous terms and tail terms

Provide gauge invariant expressions of the flux as suggested
in MGS in terms of x and k′ = (Φ − 2π)/6π = (K − 1)/3 = k/3
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Comments

Extends the circular orbit results at 2.5PN (Blanchet, 1990)
and 3PN (Blanchet, Iyer, Joguet, 2002) to the elliptical orbit
case. (involve both instantaneous and hereditary terms).

Extends earlier works on instantaneous contributions for
binaries moving in elliptical orbits at 1PN Blanchet Schäfer
89,Junker Schäfer 92) and 2PN (Gopakumar Iyer 97) to 3PN
order.

Extends hereditary contributions at 1.5PN by (Blanchet
Schäfer 93) to 2.5PN order and 3PN.

3PN hereditary contributions comprise the tail(tail) and tail2

and are extensions of (Blanchet 98) for circular orbits to the
elliptical case.
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Angular Momentum Flux

For non-circular orbits, in addition to the conserved energy
and gravitational wave energy flux, the angular momentum
flux needs to be known to determine the phasing of
eccentric binaries. A knowledge of the angular momentum
flux of the system averaged over an orbit is mandatory to
calculate the evolution of the orbital elements of
non-circular, in particular, elliptic orbits under GW radiation
reaction.

We compute the angular momentum flux of inspiralling
compact binaries moving in non-circular orbits up to 3PN
order generalising earlier work at Newtonian order by Peters
(1964), at 1PN order by Junker and Schäfer (Junker Schäfer
1992), 1.5PN (tails and spin-orbit) by Schaf́er and Rieth (1997)
and at 2PN order by Gopakumar and Iyer (1997). Unlike at
earlier post-Newtonian orders, the 3PN contribution to
angular momentum flux comes not only from instantaneous
terms but also hereditary contributions. BRI-IHP06-I – p.67/83



Far Zone Angular Momentum Flux

(

dJi

dt

)

=
G

c5
εipq

{

2

5
UpjU

(1)
qj

+
1

c2

[

1

63
UpjkU

(1)
qjk +

32

45
VpjV

(1)
qj

]

+
1

c4

[

1

2268
UpjklU

(1)
qjkl +

1

28
VpjkV

(1)
qjk

]

+
1

c6

[

1

118800
UpjklmU

(1)
qjklm +

16

14175
VpjklV

(1)
qjkl

]

+ O(8)

}

.

Using the MPM formalism, the radiative moments can be
re-expressed in terms of the source moments to an accuracy
sufficient for the computation of the angular momentum flux up to
3PN.

For the AM flux to be complete up to 3PN approximation, one must
compute the mass type radiative quadrupole Uij to 3PN accuracy,
mass octupole Uijk and current quadrupole Vij to 2PN accuracy,
mass hexadecupole Uijkm and current octupole Vijk to 1PN
accuracy and finally Uijkmn and Vijkm to Newtonian accuracy.
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Orbital Averaged AMF - ADM

ζ =
G m n

c3

〈
dJ

dt
〉
ADM

inst
=

4

5
c2 m ζ7/3 ν2 1

(1 − et
2)7/2

[

〈
dJ

dt
〉Newt + 〈

dJ

dt
〉1PN + 〈

dJ

dt
〉2PN

+〈
dJ

dt
〉2.5PN + 〈

dJ

dt
〉3PN

]

,

where ζ = G m n
c3

and the individual terms read as:

〈
dJ

dt
〉Newt =

8 + 7e2
t

(1 − e2
t )

2 ,

〈
dJ

dt
〉1PN = ζ2/3 1

(1 − et)3

{

1105

42
−

70ν

3
+ e2

t

[

5077

42
−

335ν

3

]

+e4
t

[

8399

336
−

275ν

12

]}

,
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Orbital Averaged AMF - ADM

〈
dJ

dt
〉2PN = ζ4/3 1

(1 − e2
t )

4

{[

7238

81
−

10175 ν

63
+

260 ν2

9

]

+e2
t

[

376751

756
−

37047 ν

28
+

1546 ν2

3

]

+e4
t

[

377845

756
−

168863 ν

168
+ 569 ν2

]

+e6
t

[

30505

2016
−

2201 ν

56
+

1519 ν2

36

]

+
√

1 − e2
t

[

80 − 32 ν + e2
t (335 − 134 ν) + e4

t (35 − 14 ν)

]}

,
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Orbital Averaged AMF - ADM

〈
dJ

dt
〉3PN = ζ2 1

(

1 − e2
t

)5

{

[

265845199

138600
−

20318135ν

6804
+

287π2 ν

4
+

187249 ν2

378
−

1550 ν3

81

]

+e2
t

[

1476919051

178200
−

82215823 ν

6804
+

5171π2 ν

32
+

387467 ν2

54
−

96973 ν3

81

]

+e4
t

[

669008149

103950
−

206700631 ν

18144
−

2799π2 ν

256
+

13341787 ν2

1008
−

438907 ν3

108

]

+e
6
t

[

114553217

123200
−

39280525 ν

18144
−

615π2 ν

128
+

1092025 ν2

336
−

283205 ν3

162

]

+e
8
t

[

−
10305073

709632
+

417923 ν

12096
+

95413 ν2

8064
−

146671 ν3

2592

]

+

[

−
13696

105
−

98012e2
t

105
−

23326e4
t

35
−

2461e6
t

70

]

log

[

2

(

1 − e2
t

)

G m

c2
(√

1 − e2
t

+ 1

)

r0 ζ2/3

]
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Orbital Averaged AMF - ADM

+

√

1 − e2
t

[

351577

630
−

78139 ν

63
+

41π2 ν

6
+

580 ν2

3

+e2
t

[

1723433

315
−

569398 ν

63
+

2747π2 ν

96
+ 1902 ν2

]

+e4
t

[

17557661

5040
−

2444195 ν

504
+

287π2 ν

96
+

2703 ν2

2

]

+e
6
t

[

70 −
203 ν

3
+

77 ν2

3

]]

}

.
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Checks

Circular orbit limit (et = 0) As an algebraic check, we take the
circular orbit limit of the orbital average of angular momentum flux
and the energy flux in ADM coordinates expressed in terms of ζ and
et. For circular orbit binaries the angular momentum flux and the
energy flux must be simply related as

dE

dt
= ω

dJ

dt

in any coordinate system. Here dJ
dt

is the magnitude of the angular
momentum flux.

The circular orbit limit of our calculation agrees with the above
expression with ω and is given by

ω =

(

c3 ζ

G m

)

{

1 + 3 ζ2/3 + ζ4/3
[

39

2
− 7ν

]

+ζ2
[

315

2
+

1

32

(

−6536 + 123π2
)

ν + 7ν2
]}

,

where ζ = G m n
c3

.
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Evoln of orbital elements under GRR

Most important application of the 3PN angular momentum flux
obtained here and the energy flux obtained is to calculate how the
orbital elements of the binary evolve with time under GRR. By 3PN
evolution of orbital elements under GRR we mean its evolution
under 5.5PN terms beyond leading newtonian order in the EOM.

We compute the rate of change of n, et and ar averaged over an
orbit, due to GRR.

We start with the 3PN accurate expressions for n and et in terms of
the 3PN conserved energy (E) and angular momentum (J).
Differentiating them w.r.t time and using heuristic balance equations
for energy and angular momentum up to 3PN order, we compute
the rate of change of the orbital elements.

Extends the earlier analyses at Newtonian order by Peters (64), 1PN
computation of Blanchet Schäfer 89,Junker Schäfer 92 and at 2PN
order by Gopakumar Iyer 97,Damour Gopakumar Iyer 04. The 1.5PN
hereditary effects also have been accounted in the orbital element
evolution in Blanchet Schäfer 93, Rieth Schäfer 97.
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Evoln of orbital elements under GRR

3PN accurate expressions for the mean motion n, eccentricity et

and semi-major axis ar read are listed. Let us use the example of n

to outline the procedure adopted for the computation of orbital
elements in more detail. The expression for n is symbolically written
as

n = n(E, J).

Differentiating with respect to t one obtains

dn

dt
= γ1(et, ζ, ν)

dE

dt
+ γ2(et, ζ, ν)

d|J|

dt
,

where γ1 and γ2 are PN expansions in powers of ζ. Now we use the
balance equations,

dE

dt
= −

dE

dt
,

d|J|

dt
= −

dJ

dt
.
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Evoln of orbital element n under GRR

Replace the time derivatives of the conserved energy and angular
momentum (on the right side of the expression for dn

dt
) with the

energy and angular momentum fluxes and compute the final
expression for the orbital average by using the orbital averages of
the energy and angular momentum fluxes up to 3PN. It may be
noted that, the angular momentum flux is needed only up to 1PN
accuracy for the computation of 〈 dn

dt
〉 where as the energy flux is

needed up to 3PN. The structure of the evolution equations is similar
for the other orbital elements also and the same procedure can be
employed. The final expression for the 3PN evolution of n reads

〈
dn

dt
〉ADM
inst =

c6

G2 m2
ζ11/3

[

〈
dn

dt
〉Newt + 〈

dn

dt
〉1PN + 〈

dn

dt
〉2PN + 〈

dn

dt
〉3PN

]
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Evoln of orbital element n under GRR

〈
dn

dt
〉Newt =

1
(

1 − e2
t

)7/2

{

96

5
+

292e2
t

5
+

37e4
t

5

}

,

〈
dn

dt
〉1PN =

ζ2/3

(

1 − e2
t

)9/2

{

2546

35
−

264 ν

5
+ e2

t

[

5497

7
− 570 ν

]

+ e4
t

[

14073

20
−

5061 ν

10

]

+ e6
t

[

11717

280
−

148 ν

5

]}

,

〈
dn

dt
〉2PN =

ζ4/3

(

1 − e2
t

)11/2

{

393527

945
+ e2

t

[

4098457

945
−

108047ν

15
+

182387ν2

90

]

+ e4
t

[

1678961

180
−

2098263ν

140
+

396443ν2

72

]

+ e6
t

[

1249229

336
−

76689ν

16
+

192943ν2

90

]

+
√

1 − e2
t

[

48 −
47491ν

105
+

944ν2

15
+ e2

t

[

2134 −
4268ν

5

]

+ e4
t

[

2193 −
4386ν

5

]

+ e6
t

[

175

2
− 35ν

]

−
96ν

5

]

+e8
t

[

391457

3360
−

6037ν

56
+

2923ν2

45

]}

,
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Evoln of orbital element n under GRR

〈
dn

dt
〉3PN =

ζ2

(

1 − e2
t

)13/2

{[

6687854333

1039500
−

113898769 ν

11340
+

2337π2 ν

10
+

564197 ν2

420
−

1121 ν3

27

+ e2
t

[

132891898933

2079000
−

1993945913ν

22680
+

19207π2 ν

16
+

5552087 ν2

168
−

1287385 ν3

324

]

+ e4
t

[

151872497839

1188000
−

2340827549ν

12960
+

22723π2 ν

160
+

28833055 ν2

224
−

33769597 ν3

1296

]

+ e6
t

[

63380900591

792000
−

2509038229ν

20160
−

43937π2 ν

128
+

236136203 ν2

2240
−

3200965 ν3

108

]

+ e
8
t

[

93247526201

7392000
−

1814291 ν

96
−

12177π2 ν

640
+

3251909 ν2

210
−

982645 ν3

162

]

+
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Evoln of orbital element n under GRR

+ e
10
t

[

33332681

197120
−

1874543 ν

10080
+

109733 ν2

840
−

8288 ν3

81

]]

+

√

1 − e2
t

[[

−
669319

1125
−

3670 ν

21
−

41π2 ν

10
+

632 ν2

5

+ e2
t

[

11326954

375
−

14778121ν

315
+

45961π2 ν

240
+

125278 ν2

15

]

+ e4
t

[

1534643951

21000
−

5720941 ν

60
+

6191π2 ν

32
+

317273 ν2

15

]

+ e6
t

[

775558207

31500
−

35318351 ν

1260
+

287π2 ν

960
+

232177 ν2

30

]

+ e
8
t

[

56403

112
−

427733 ν

840
+

4739 ν2

30

]]]

+

107

[

3072 + 43520e2
t

+ 82736e4
t

+ 28016e6
t

+ 891e8
t

]

ln [X]

1050

[

1 − e2
t

]13/2

}

,

X =

[

c2
(√

1 − e2
t

+ 1

)

r0 ζ2/3

2

(

1 − e2
t

)

G m

]

.
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Evoln of orbital elements under GRR

The three expressions obtained here are the 3PN generalizations of
the expressions given in Peters which are at the lowest quadrupolar
order. They could be used to provide 3PN extensions of n(e) and a(e)

relations in the future.

The above results have to be supplemented by the computation of
hereditary terms at 2.5PN and 3PN for completion. These hereditary
terms include the tails at 2.5PN and tail of tails and tail-square terms
at 3PN.

Formally one can analytically solve the coupled evolution system by
successive approximations, reducing it to simple quadratures. Eg, at
the leading order O(c−5) one can first eliminate t by dividing dn̄/dt

by dēt/dt, thereby obtaining an equation of the form
d ln n̄ = f0(ēt)dēt. Integration of this equation yields

n̄(ēt) = ni
e
18/19
i (304 + 121 e2

i )
1305/2299

(1 − e2
i )

3/2

(1 − e2
t )

3/2

e
18/19
t (304 + 121 e2

t )
1305/2299

,

ei is the value of et when n = ni. First obtained by Peters 64.
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Beyond Orbital Averages

GW obsvns of ICB, are analogous to the high precision Radio
wave obsvns of binary pulsars.

GW obsvns demand accurate ‘phasing’, i.e. an accurate
mathematical modeling of the continuous time evolution of
the gravitational waveform.

GW emitted from inspiralling circular orbits, contain only two
different time scales: orbital motion and radiation reaction

Inspiralling eccentric orbits involve three different time scales:
orbital period, periastron precession and radiation-reaction
time scales.

By using an improved ‘method of variation of constants’, one
can combine these three time scales, without making the
usual approximation of treating the radiative time scale as
an adiabatic process. Relies on techniques from (Damour
83, 85) to implement PN ‘phasing’ for elliptical orbits.
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Beyond Orbital Averages

Going beyond the average evolution of the orbit under Grav
Radn reaction the method allows one to deal with both a
‘slow’ (radiation-reaction time-scale) secular drift and ‘fast’
(orbital time-scale) periodic oscillations.

Method implemented at the 2.5PN (Damour, Iyer,
Gopakumar) and 3.5PN ( Königsdörffer, Gopakumar)

Results compute new ‘post-adiabatic’ short period
contributions to the orbital phasing, or equivalently, new
short-period contributions to GW polarizations, h+,×, to be
explicitly added to PN expn for h+,×, if one treats radiative
effects on the orbital phasing in the usual adiabatic
approximation.

Should be of importance both for the LIGO/VIRGO/GEO
network of ground based interferometric GW detectors and
for space-based interferometer LISA.
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1PN Quasi-Keplerian Reprn

The explicit dependence of the orbital elements in terms of the
1PN conserved orbital energy E and angular momentum J is
given in (Damour Deruelle 85)

ar =
1

Gm

1

(−2E)

{

1 +
(−2E)

4 c2
(−7 + ν)

}

,

er
2 = 1 + 2E h2 +

(−2E)

4 c2

{

24 − 4 ν + 5 (−3 + ν) (−2E h2)

}

,

n = (−2E)3/2

{

1 +
(−2E)

8 c2
(−15 + ν)

}

,

et
2 = 1 + 2E h2 +

(−2E)

4 c2

{

− 8 + 8 ν − (−17 + 7 ν) (−2E h2)

}

,

eφ
2 = 1 + 2E h2 +

(−2E)

4 c2

{

24 + (−15 + ν) (−2E h2)

}

.
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