| Introduction | Formalism | Numerical methods | Comparisons and results | Conclusions |
|--------------|-----------|-------------------|-------------------------|-------------|
|              |           |                   |                         |             |
|              |           |                   |                         |             |
|              |           |                   |                         |             |
|              |           |                   |                         |             |

# Accurate and realistic black hole-neutron star binaries

Philippe Grandclément

Laboratoire de l'Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris F-92195 Meudon, France

philippe.grandclement@obspm.fr

November 13-17, 2006

Based on gr-qc/0609044

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

| Introduction | Formalism | Numerical methods | Comparisons and results | Conclusions |
|--------------|-----------|-------------------|-------------------------|-------------|
|              |           |                   |                         |             |
|              |           |                   |                         |             |

# Introduction

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Formalism

Numerical methods

Comparisons and result

Conclusions

# The detectors





| Introduction | Formalism | Numerical methods | Comparisons and results | Conclusions |
|--------------|-----------|-------------------|-------------------------|-------------|
|              |           |                   |                         |             |
| <b>D</b> .   |           |                   |                         |             |

#### Detection rates

### initial-LIGO $(yr^{-1})$

| Binary type | Standard Model    | All Range                        |
|-------------|-------------------|----------------------------------|
| NS-NS       | $1 	imes 10^{-2}$ | $2	imes 10^{-4}7	imes 10^{-1}$   |
| BH-NS       | $2 	imes 10^{-2}$ | $2 	imes 10^{-3}7 	imes 10^{-2}$ |
| BH-BH       | $8	imes 10^{-1}$  | 02                               |
| Total       | $8	imes 10^{-1}$  | $2 	imes 10^{-3}2$               |

#### advanced-LIGO $(yr^{-1})$

| Binary type | Standard Model | All Range                |
|-------------|----------------|--------------------------|
| NS-NS       | $6	imes 10^1$  | $14	imes 10^2$           |
| BH-NS       | $8	imes 10^1$  | $94 	imes 10^{2}$        |
| BH-BH       | $2 	imes 10^3$ | $08 	imes 10^{3}$        |
| Total       | $3	imes 10^3$  | $1	imes 10^18	imes 10^3$ |

K. Belczynski, V. Kalogera and T. Bulik, Astrophys. J., 572, 407 (2001)

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

| Introduction | Formalism                                                                     | Numerical methods                | Comparisons and results | Conclusions |
|--------------|-------------------------------------------------------------------------------|----------------------------------|-------------------------|-------------|
| Binary para  | ameters                                                                       |                                  |                         |             |
|              | Volum<br>2 - 4<br>- 4<br>- 4<br>- 4<br>- 4<br>- 4<br>- 4<br>- 4<br>- 4<br>- 4 | e limited distribution, model Z2 | ,BHNS binaries          |             |



T. Bulik, D. Gondek-Rosinska and K. Belczynski, MNRAS,  $\mathbf{352}$ , 1372 (2004)

◆□> ◆圖> ◆ヨ> ◆ヨ> 三連





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

| Introduction | Formalism | Numerical methods | Comparisons and results | Conclusions |
|--------------|-----------|-------------------|-------------------------|-------------|
|              |           |                   |                         |             |
|              |           |                   |                         |             |

# **Formalism**

<□ > < @ > < E > < E > E のQ @





▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Coordinate system of  $\Sigma_t$ :  $(x_1, x_2, x_3)$ .
- Coordinate system of spacetime :  $(t, x_1, x_2, x_3)$ .



#### The metric reads

$$\mathrm{d}s^2 = -\left(N^2 - N^i N_i\right) \mathrm{d}t^2 + 2N_i \mathrm{d}t \mathrm{d}x^i + \gamma_{ij} \mathrm{d}x^i \mathrm{d}x^j$$

| 1110+ |  |
|-------|--|
|       |  |

▲□▶▲□▶▲□▶▲□▶ □ のQ@

# Projection of Einstein equations (without matter)

| Туре        | Einstein                                                                                  | Maxwell                                                                                                          |
|-------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|             | Hamiltonian $R + K^2 - K_{ij}K^{ij} = 0$                                                  | $ abla \cdot ec{E} = {\sf 0}$                                                                                    |
| Constraints |                                                                                           |                                                                                                                  |
|             | Momentum : $D_j K^{ij} - D^i K = 0$                                                       | $ abla \cdot ec{B} = 0$                                                                                          |
|             | $\frac{\partial \gamma_{ij}}{\partial t} - \mathcal{L}_{\vec{N}} \gamma_{ij} = -2NK_{ij}$ | $\frac{\partial \vec{E}}{\partial t} = \frac{1}{\varepsilon_0 \mu_0} \left( \vec{\nabla} \times \vec{B} \right)$ |
| Evolution   |                                                                                           |                                                                                                                  |
|             | $\frac{\partial K_{ij}}{\partial t} - \mathcal{L}_{\vec{N}} K_{ij} = -D_i D_j N +$        | $rac{\partial ec{B}}{\partial t} = -ec{ abla} 	imes ec{E}$                                                      |
|             | $N\left(R_{ij}-2K_{ik}K_{j}^{k}+KK_{ij}\right)$                                           |                                                                                                                  |

 $R_{ij}$  is the Ricci tensor of  $\gamma_{ij}$  and  $D_i$  the covariant derivative associated with  $\gamma_{ij}$ .

 $K_{ij}$  is called the extrinsic curvature.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Quasiequilibrium binaries

#### Assume exact circular orbits

- Only an approximation : no closed orbits in GR.
- Existence of an helical Killing vector.
- In the inertial frame :  $\partial_t = \Omega \partial_{\varphi}$  (the associated shift is  $N^i$ ).
- In the corotating frame  $\Longrightarrow \partial_t = 0$  (the associated shift is  $\beta^i$ )

#### Additional approximations :

- Maximum slicing K = 0.
- Conformal flatness  $\gamma_{ij} = \Psi^4 f_{ij}$ .
- Asymptotical flatness.

#### Successfully applied to BBH and BNS.

| Introduction | Formalism | Numerical methods | Comparisons and results | Conclusions |
|--------------|-----------|-------------------|-------------------------|-------------|
| The equ      | ations    |                   |                         |             |

5 coupled elliptic equations for the metric fields

• Hamiltonian constraint :

$$\Delta \Psi = -2\pi \Psi^5 E - \frac{\Psi^5}{8} \tilde{A}_{ij} \tilde{A}^{ij}$$

• Momentum constraint :

 $\Delta\beta^{i} + \frac{1}{3}\bar{D}^{i}\bar{D}_{j}\beta^{j} = 16\pi N\Psi^{4}\left(E+p\right)U^{i} + 2\tilde{A}^{ij}\left(\bar{D}_{j}N - 6N\bar{D}_{j}\ln\Psi\right)$ 

• Trace of the evolution equation :

 $\Delta N = 4\pi N \Psi^4 \left( E + S \right) + N \Psi^4 \tilde{A}_{ij} \tilde{A}^{ij} - 2 \bar{D}_i \ln \Psi \bar{D}^i N$ 

Definition of  $\tilde{A}^{ij} = \Psi^4 K_{ij} = \frac{1}{2N} \left( \bar{D}^i \beta^j + \bar{D}^j \beta^i - \frac{2}{3\bar{D}_k} \beta^k f^{ij} \right).$ 

Introduction

Formalism

Numerical methods

Comparisons and result

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

Conclusions

### The thin-sandwich approach

#### Decomposition :

$$\gamma_{ij} = \Psi^4 \tilde{\gamma}_{ij}$$

$$egin{aligned} & \Psi^{-4}\left[rac{(Leta)^{ij}- ilde{u}^{ij}}{2N}
ight]-rac{1}{3}\gamma^{ij}K \ & ext{ with } (Leta)^{ij}= ilde{D}^ieta^j+ ilde{D}^jeta^i-rac{2}{3} ilde{D}_keta^k ilde{\gamma}^{ij} \end{aligned}$$

#### Freely specifiable variables :

K

- $\bullet \ K, \ \tilde{\gamma}^{ij} \ \text{and} \ \tilde{u}^{ij}.$
- the Hamiltonian constraint  $\implies$  equation on  $\Psi$ .
- the momentum constraint  $\implies$  equation on  $\beta^i$ .

Comparisons and result

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conclusions

### Extended thin-sandwich

If those initial data are evolved with N and  $\beta^i$  :

- $\partial_t \tilde{\gamma}^{ij} = \tilde{u}^{ij}$ .
- $\partial_t K \Longrightarrow$  elliptic equation on N.

#### Choice of variables for quasiequilibrium

- maximum slicing : K = 0
- equilibrium :  $\tilde{u}^{ij} = 0$  and  $\partial_t K = 0$ .
- conformal flatness :  $\tilde{\gamma}^{ij} = f^{ij}$ .

This system of equations for N,  $\Psi$  and  $\beta^i$  is the same as the one derived using the helical symmetry.

# Equations for the fluid

#### Assumptions

- Irrotational flow :  $hu^{\nu} = \nabla^{\nu} \Phi$ , where *h* is the specific enthalpy,  $u^{\nu}$  the 4-velocity and  $\Phi$  the potential.
- Cold matter  $\implies$  the quantities n, e and p are function of  $H = \ln h$  only.
- Polytropic equation of state :  $p = \kappa n^{\Gamma}$  (in this work  $\Gamma = 2$ ).

#### Implications :

• One elliptic equation for the potential  $\xi H \Delta \Phi + \bar{D^{i}} H \bar{D_{i}} \Phi = \Psi^{4} h \Gamma_{n} U_{0}^{i} \bar{D_{i}} H + \xi H \left( \bar{D^{i}} \Phi \bar{D_{i}} \left( H - \beta \right) \right. \\ \left. + \Psi^{4} h U_{0}^{i} \bar{D_{i}} \Gamma_{n} \right)$ 

where  $H = \ln h$ ,  $\xi = d \ln H/d \ln n$ ,  $\beta = \ln (\Psi^2 N)$  and  $U_0^i$  is the 3-velocity of the corotating observer

• One integral of motion  $hN\frac{\Gamma}{\Gamma_0} = \text{const.}$ 

| Introduction | Formalism | Numerical methods | Comparisons and results | Conclusions |
|--------------|-----------|-------------------|-------------------------|-------------|
| The black    | k hole    |                   |                         |             |

#### Boundary conditions

BC are found by imposing apparent horizon conditions on a sphere S with  $N|_S = 0$ .

• apparent horizon :  $\partial_r$ 

$$\left.\Psi + \frac{\Psi}{2r}\right|_{S} = 0$$

• equilibrium :  $egin{array}{cc} eta^i ig|_S = \Omega_r \partial^i_arphi \end{array}$ 

#### Comments

- N = 0 implies a regularization on  $\beta^i$  to ensure regularity of  $\tilde{A}^{ij} = 1/2N \left( \bar{D}^i \beta^j + \bar{D}^j \beta^i 2/3 \bar{D}_k \beta^k f^{ij} \right)$
- For a corotating BH :  $\Omega_r = 0$ .
- Here only irrotational  $BH \implies \Omega_r$  is determined to ensure that the local spin of the BH vanishes.

Introduction

Formalism

Numerical methods

Comparisons and resul

(日) (雪) (日) (日) (日)

Conclusions

### Influence of the regularization



M. Caudill, G.B. Cook, J.D. Grigsby and H.P. Pfeiffer, Phys. Rev. D, 74, 064011 (2006) The correction should be even smaller for BH-NS binaries

| Introduction | Formalism | Numerical methods | Comparisons and results | Conclusions |
|--------------|-----------|-------------------|-------------------------|-------------|
|              |           |                   |                         |             |

# Additional quantities

#### Asymptotical flatness $\implies$ BC at infinity :

$$N \longrightarrow \mathbf{1}$$

$$\Psi \longrightarrow 1$$

$$\beta^i \longrightarrow \Omega \partial_{\varphi}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Orbital velocity

 $\Omega$  is determined by equilibrium of the fluid. The gradient of *h* is zero at the center of the star.

| Introduction | Formalism | Numerical methods | Comparisons and results | Conclusions |
|--------------|-----------|-------------------|-------------------------|-------------|
|              |           |                   |                         |             |
|              |           |                   |                         |             |

# **Numerical methods**

<□ > < @ > < E > < E > E のQ @

Introduction

Formalism

Numerical methods

Comparisons and result

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conclusions

### Spectral methods

#### LORENE http://www.lorene.obspm.fr

Numerical library in C++ to use multi-domains spectral methods

- Cartesian components :  $\vec{V} = (V^x, V^y, V^z)$ .
- Spherical coordinates around each object :  $V^{x}(r, \theta, \varphi)$ .
- The fields are expanded on :
  - trigonometrical polynomials or spherical harmonics for heta and arphi.
  - Chebyshev polynomials with respect to r.
- Solving PDEs reduces to matrices inversion.

| Introduction | Formalism | Numerical methods | Comparisons and results | Conclusions |
|--------------|-----------|-------------------|-------------------------|-------------|
|              |           |                   |                         |             |

# Spherical domains



Numerical coordinates  $(\xi, \theta, \varphi) \longrightarrow$  Physical coordinates  $(r, \theta, \varphi)$ .

| Introduction | Formalism | Numerical methods | Comparisons and results | Conclusions |
|--------------|-----------|-------------------|-------------------------|-------------|
| Binary s     | ystems    |                   |                         |             |

Sources are concentrated around the two objects :

$$\Delta f = S \Longrightarrow \begin{cases} \Delta f_1 = S_1 \\ \Delta f_2 = S_2 \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

with  $S = S_1 + S_2$ . The splitting is not unique. Two sets of domains are used. Introduction

Formalism

Numerical methods

Comparisons and resul

Conclusions

### Additional properties of the domains

- Spatial infinity is part of the numerical domain by use of u = 1/r in the external domain.
- The grid of the NS is adapted to the surface of the star, where *H* = 0, to avoid discontinuities that would cause the spectral methods to lose their accuracy.



Regularity and boundary conditions are easily enforced.

| Introduction | Formalism | Numerical methods | Comparisons and results | Conclusions |
|--------------|-----------|-------------------|-------------------------|-------------|
| Iterative s  | scheme    |                   |                         |             |

Some parameters must be tuned during the course of the iteration to fulfill some additional conditions :

- $\Omega_r$  to get  $S_{\text{BH}} = 0$ .
- $h_c$  to converge to a given baryon mass for the NS  $M_{\rm b}$ .
- the radius of the BH to get a given irreducible mass  $M_{\rm irr}$ .
- the position of the rotation axis so that the linear momentum vanishes  $P_{\text{tot}} = 0$ .

#### Typical run

• The system is solved by iteration until the fields converges to  $10^{-7}$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Resolution :  $N_r \times N_{\theta} \times N_{\varphi} = 33 \times 21 \times 20$
- 8 domains for each objects.

| Introduction | Formalism | Numerical methods | Comparisons and results | Conclusions |
|--------------|-----------|-------------------|-------------------------|-------------|
|              |           |                   |                         |             |
|              |           |                   |                         |             |

# **Comparisons and results**

# Extreme mass ratio limit

K. Taniguchi, T.W. Baumgarte, J.A. Faber and S.L. Shapiro, Phys. Rev. D, 72, 044008 (2005)

#### Assumptions

- BH background is fixed.
- Solve only for the NS.

#### Properties

- Decomposition not unique.
- No access to the binding energy of the binary.
- Should work for high mass ratios.

#### Results : $\chi$ , measure of the deformation of the star, as a function of $\Omega$

- $\chi = 1$  for a spherical star.
- $\chi \rightarrow 0$  at the tidal disruption limit (a cusp is forming).



0.015

 $\Omega M_{BH}$ 

0.0175

0.02

G → This work G → Isotropic (Taniguchi et al. [12])

0.01

G-O Kerr-Schild (Taniguchi et al. [12])

0.0125

0.5

0.4

0.0225

| Introduction | Formalism | Numerical methods | Comparisons and results | Conclusions |
|--------------|-----------|-------------------|-------------------------|-------------|
|              |           |                   |                         |             |
|              |           |                   |                         |             |

Mass ratio=10,  $\overline{M}_{NS} = 0.1$ 



<ロト <回ト < 注ト < 注ト

4

### Low compactness limit, mass ratio = 5

K. Taniguchi, T.W. Baumgarte, J.A. Faber and S.L. Shapiro, Phys. Rev. D, 74, 041502 (2006)

Same hypothesis as this work but

- "freely" specifiable variables from Kerr-Schild.
- Irrotationality imposed only to first order  $\Omega_r = \Omega$ .
- Better BC on the horizon  $N \neq 0$ .
- Similar but independent numerics.
- Neutron star has a very low compactness :  $\Xi = 0.0879$



▲□▶ ▲□▶ ▲目▶ ▲目▶ 三三 - のへで



▲□▶ ▲□▶ ▲目▶ ▲目▶

4

### Unrealistic compactness



◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

| Introduction | Formalism | Numerical methods | Comparisons and results | Conclusions |
|--------------|-----------|-------------------|-------------------------|-------------|
| New resu     | ults      |                   |                         |             |

- Mass ratio 5
- Compactness of the NS increased by varying  $\kappa$  in the EOS.
- Sequences of constant  $M_{\rm irr}$  and  $M_{\rm b}$ .
- Compactness up to  $\Xi = 0.15$  (moderate value, not very high).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Comparisons and results

・ロト ・聞ト ・ヨト ・ヨト

4

Conclusions

# Regularization of the shift



| Introduction | Formalism | Numerical methods | Comparisons and results | Conclusions |
|--------------|-----------|-------------------|-------------------------|-------------|
| Viriel the   | orem      |                   |                         |             |



▲ロト ▲母 ▶ ▲目 ▶ ▲目 ▶ ▲母 ▶ ▲ ● ● ● ●

| Introduction | Formalism | Numerical methods | Comparisons and results | Conclusions |
|--------------|-----------|-------------------|-------------------------|-------------|
|              |           |                   |                         |             |

# Local rotation rate



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

| Introduction | Formalism | Numerical methods | Comparisons and results | Conclusions |
|--------------|-----------|-------------------|-------------------------|-------------|
| Deforma      | ntion     |                   |                         |             |



くしゃ 本語 \* 本語 \* 本語 \* 人口 \*

| Introduction | Formalism | Numerical methods | Comparisons and results | Conclusions |
|--------------|-----------|-------------------|-------------------------|-------------|
| Binding (    | energy    |                   |                         |             |



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Introduction

Formalism

Numerical methods

Comparisons and results

◆□> ◆□> ◆豆> ◆豆> 「豆

Conclusions

# N in the orbital plane, $\Xi = 0.15$



х

# $ilde{A}^{XX}$ in the orbital plane, $\Xi=0.15$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

| Introduction | Formalism | Numerical methods | Comparisons and results | Conclusions |
|--------------|-----------|-------------------|-------------------------|-------------|
| Conclusio    | ons       |                   |                         |             |

#### Results

- Accurate code for NSBH binaries.
- Good agreement with other works for high mass ratios.
- Somewhat good agreement for low compactness.
- First results for realistic NS.

#### Future work

- Remove  $N|_S = 0$ .
- Compute the deviation from conformal flatness.
- Explore the parameter space (EOS, mass ratios).
- Perform time evolution of the data.
- Deduce implications on the emitted GW.