Higher-order spin effects in the dynamics of compact binaries

Guillaume Faye ${ }^{a}$ Luc Blanchet ${ }^{a}$ Alessandra Buonanno ${ }^{b, c, a}$

${ }^{a}$ Institut d'Astrophysique de Paris (IAP), UMR 7095 CNRS
Université Pierre \& Marie Curie
${ }^{b}$ Department of Physics, University of Maryland
${ }^{c}$ AstroParticule et Cosmologie (APC)
14th November 2006

UNIVERSITE

(1) Introduction
(2) Spinning particles in the post-Newtonian approximation of GR
(3) Near-zone dynamics

- Post-Newtonian metric and potentials
- Equations of motion and conserved quantities
(4) Far-zone dynamics
- Gravitational-wave energy flux
- Results

Motivation

- black-hole binary systems $=$ important source of GW detectable by LISA (or Virgo)

In particular

- in-spiral and coalescence of massive black holes
- extreme mass-ratio in-spiraling (EMRI) events
- in-spiral of stellar black holes (\rightarrow Virgo - LIGO)
- matter accretion of black holes in their lives \hookrightarrow increasing of the spin i.e. intrinsic angular momentum \Rightarrow model for the in-spiral of a spinning black-hole compact binary needed: continuation of a work by Tagoshi et al. and Owen et al. [PRD 63 (2001), PRD 57 (1998)]

The post-Newtonian scheme

- post-Newtonian approximation for a in-spiraling binary of typical mass m and typical separation $r_{12} \sim L$
- weak fields and velocities: $\frac{v^{2}}{c^{2}} \sim \frac{G m}{L c^{2}} \ll 1$
- weak stress: $\left.\sigma=\frac{T^{00}+T^{i i}}{c^{2}}, \sigma_{i}=\frac{T^{0 i}}{c}, \sigma_{i j}=T^{i j}\right\}$ quant.

post-Newtonian expansion

perturbative expansion of the metric in powers of
$1 / c^{2} \ll 1$ (for $G=m=L=1$)
Notation: $1 P N=$ order $1 / c^{2}$

- domain of validity
$L / \lambda \sim v / c \rightarrow$ existence of a near zone $\mathcal{D}_{\text {near }}$ of typical size D with negligible GW-propagation effects
$\Rightarrow r=|\mathbf{x}| \ll \lambda$ in $\mathcal{D}_{\text {near }}$

Application to the computation of the orbital phase

(1) Specialization to binary in-spiraling systems

- consequence of GW radiation a few 1000's of cycles before the coalescence
- motion \sim circular with orbital frequency ω
- binding energy $E \searrow \Rightarrow \omega \nearrow$ and $r \searrow$ (Kepler law)
- for $r \gtrsim 10 m$ (say), PN approximation valid

adiabatic in-spiral

nearly circular orbits with $E \searrow$ adiabatically according to $d E / d t=-($ GW flux $\mathcal{L})$ in the PN regime
precessional correction
(2) resulting strategy in the computation of $\Phi_{\mathrm{GW}}=2 \phi_{\text {orb. }}+\delta \Phi_{\mathrm{GW}}$

$$
E(\omega), \mathcal{L}(\omega) \text { PN scheme } \Rightarrow \frac{d \omega}{d t}=\frac{-\mathcal{L}}{d E / d \omega} \Rightarrow \phi_{\text {orb. }}
$$

A point-particle model

up to very high PN orders, in the absence of the spin
compact objects $=$ point-particles + self-field elimination by dimensional regularization procedure

3 justifications

- general arguments showing that tidal effects appear at 5PN
- agreement of the equations of motion for a compact binary with those obtained in the extended-body approach by Itoh
- Brill-Lindquist initial solution for two black holes recovered by means of point-particles

up to 2PN, Hadamard regularization sufficient

- self-field singularities near body 1 at position \mathbf{y}_{1} removed
- angular average over $\mathbf{n}_{1}=\left(\mathbf{x}-\mathbf{y}_{1}\right) /\left|\mathbf{x}-\mathbf{y}_{1}\right|$ performed
- limit $r_{1}=\left|\mathbf{x}-\mathbf{y}_{1}\right| \rightarrow 0$ taken

Notation

Spin modeling I

definition: spin tensor for a test particle

 anti-symmetric 4-tensor parameterizing the dipole of the stress-energy tensor$$
T^{\mu \nu}=c \sum_{A}\left[u_{\text {part. 4velocity }}^{(\mu} p_{\text {part. momentum }}^{\nu)} u_{A}^{0} \frac{\delta\left(\mathbf{x}-\mathbf{y}_{A}\right)}{\sqrt{-g_{A}}}-\nabla_{\rho}\left(S^{\rho(\mu} u_{A}^{\nu)} u_{A \nu}^{0} \frac{\delta\left(\mathbf{x}-\mathbf{y}_{A}\right)}{\sqrt{-g}}\right)\right]
$$

p_{A}^{μ} and $S_{A}^{\mu \nu}$ chosen consistently so that $\frac{D S^{\mu \nu}}{d \tau} \equiv c\left(p_{A}^{\mu} u_{A}^{\nu}-p_{A}^{\nu} u_{A}^{\mu}\right)$ \hookrightarrow still arbitrariness in the definition of $S_{A}^{\mu \nu}$
introduction of spin supplementary conditions (SSC)

$$
\begin{aligned}
& S_{A}^{\mu \nu} p_{\nu}^{A}=0 \quad \Rightarrow \quad \text { dual of } S_{A}^{\mu \nu} \text { of the form } S_{A}^{\mu} p_{A}^{\nu} \\
& S_{\mu}^{A} u_{A}^{\mu}=0
\end{aligned}
$$

Spin modeling II

Consequences:

- $p_{A}^{\mu} p_{\mu}^{A}=-m_{A}^{2} c^{2}$
- spin entirely encoded by a 3-vector $S_{i}^{A} \equiv g_{i j} S_{A}^{j}$ physical interpretation for extended bodies

present model

$=$ test spinning particle model + Hadamard reg.

$$
\hookrightarrow g_{A} \equiv \text { reg. of } g
$$

$$
\text { at } \mathbf{y}_{A}
$$

Spin modeling III

Bodies with extension \ll inverse curvature: $T^{\mu \nu}$ action as a distribution simplified

$$
\begin{gathered}
\int d^{4} x T^{\mu \nu}(x) \phi_{\mu \nu}(x) \approx \int d^{4} x T_{\text {skeleton }}^{\mu \nu}(x) \phi_{\mu \nu}(x) \\
\text { with } T_{\text {skeleton }}^{\mu \nu}=\int d \tau \sum_{\ell=0}^{+\infty} \nabla_{\mu_{1} \ldots} \nabla_{\mu_{\ell}}\left[\mathcal{I}^{\mu \nu \mu_{1} \ldots \mu_{\ell}} \frac{\delta^{4}(x-y(\tau))}{\sqrt{-g}}\right]
\end{gathered}
$$

constraints of conservation $\nabla_{\nu} T_{\text {skeleton }}^{\mu \nu}=0$

 relations between the momenta and the 4-velocity $u^{\mu}=d x^{\mu} / d \tau$for $\ell \leq 1 \rightarrow T_{\text {skeleton }}^{\mu \nu}=$ stress-energy of a point-like object with spin

Spin scaling

(1) Orders of magnitude $S \sim\left|\mathbf{x}_{\text {object }} \times \mathbf{p}_{\text {spin }}\right| \lesssim m r v_{\text {spin }}=\left(G m^{2} / c\right)\left[r c^{2} /(G m)\right]\left(v_{\text {spin }} / c\right)$
for a compact object $r c^{2} /(G m) \sim 1$

- fast rot. $\Rightarrow v_{\text {spin }} / c \sim 1$ $S \sim G m^{2} / c=\mathcal{O}(1 / c)$
- slow rot. $\Rightarrow v_{\text {spin }} / c \ll 1 \quad S \sim G m^{2} v_{\text {spin }} / c^{2}=\mathcal{O}\left(1 / c^{2}\right)$

Notation:
$S_{A}^{i}=$
$c S_{A(\text { real })}^{i}$
(2) Dominant spin effects on the dynamics acceleration SO: $\propto\left(G \partial^{2} r_{12}^{-1}\right) \epsilon_{\text {Levi Civita }} v_{B} S_{A} / c^{3} \rightarrow 1.5 \mathrm{PN}$ acceleration SS: $\propto\left(G n_{12} / r_{12}^{2}\right) S_{1} S_{2}\left(n_{12} n_{12}\right) /\left(m_{A} c^{4}\right) \rightarrow 2 \mathrm{PN}$

to be computed at 2.5PN

first corrections of SO interactions SS terms ignored (already known at 2PN)

Newtonian metric in the near zone I

Perturpative calculation

in the near zone $\mathcal{D}_{\text {near }}$ metric searched under the form of a PN expansion $g_{\mu \nu}=\sum_{m>m_{0}(\mu \nu)} g_{\mu \nu}^{(m)} / c^{m}$

Main steps of the general algorithm
(1) Starting point: Einstein equations in harmonic coordinates

$$
\begin{aligned}
& \text { (with } \left.h^{\mu \nu}=\sqrt{-g} g^{\mu \nu}-\eta_{\mu}^{\mu \nu}\right) \text { flat metric } \\
& \qquad \square h^{\mu \nu}=\frac{16 \pi G}{c^{4}}|g| T^{\mu \nu}+\Lambda^{\mu \nu}(h, h), \quad \partial_{\nu} h^{\mu \nu}=0
\end{aligned}
$$

(2) Iterative computation of the metric

- solving of Einstein equations at order m with $\square_{\mathcal{R}}^{-1} \stackrel{\text { 3.5PN }}{=}$ ret. int.
- replacement of h in $\Lambda^{\mu \nu}(h, h)$ at order $m+2 \rightarrow \Lambda_{(m+2)}^{\mu \nu}(h, h)$
- passing over to next order

Post-Newtonian metric in the near zone II

$$
\begin{aligned}
g_{00} & =-1+\frac{2}{c^{2}} V-\frac{2}{c^{4}} V^{2}+\frac{8}{c^{6}}\left[\hat{X}+V_{i} V_{i}+\frac{V^{3}}{6}\right]+\mathcal{O}\left(\frac{1}{c^{8}}\right) \\
g_{0 i} & =-\frac{4}{c^{3}} V_{i}-\frac{8}{c^{5}} \hat{R}_{i}+\mathcal{O}\left(\frac{1}{c^{7}}\right) \\
g_{i j} & =\delta_{i j}\left(1+\frac{2}{c^{2}} V+\frac{2}{c^{4}} V^{2}\right)+\frac{4}{c^{4}} \hat{W}_{i j}+\mathcal{O}\left(\frac{1}{c^{6}}\right)
\end{aligned}
$$

$V, V_{i}, \hat{W}_{i j}, \hat{R}_{i}, \hat{X}$ hierarchy of retarded potentials

example: 2 typical potentials

$$
\begin{aligned}
& V=\square_{\mathcal{R}}^{-1}(-4 \pi G \sigma)=-\Phi_{\text {Newt. }}+\mathcal{O}\left(\frac{1}{c^{2}}\right) \\
& \hat{R}_{i}=\square_{\mathcal{R}}^{-1}\left[-4 \pi G\left(V \sigma_{i}-V_{i} \sigma\right)-2 \partial_{k} V \partial_{i} V_{k}-\frac{3}{2} \partial_{t} V \partial_{i} V\right]
\end{aligned}
$$

Explicit evaluation of the potentials at a given order I

(1) Expansion of the retardations of $\square_{\mathcal{R}}^{-1} S$ in powers of $1 / c$ \hookleftarrow performable as if the source S were compact at 2.5 PN
(2) computation of $\int d^{3} \mathbf{x}^{\prime}\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{m-1} S\left(\mathbf{x}^{\prime}, t\right)$

- potentials with compact source: obtained from the formulas

$$
\begin{array}{ll}
\int d^{3} \mathbf{x} F(\mathbf{x}, t) \delta\left(\mathbf{x}-\mathbf{y}_{A}\right)=(F)_{A} & \text { (monopoles) } \\
\int d^{3} \mathbf{x} F(\mathbf{x}, t) \partial_{\mu} \delta\left(\mathbf{x}-\mathbf{y}_{A}\right)=-\left(\partial_{\mu} F\right)_{A}+\delta_{\mu}^{0} \partial_{0}(F)_{A} & \text { (dipoles) }
\end{array}
$$

- potentials with quadratic source: obtained by means of the kernel $g=\ln \left(r_{1}+r_{2}+r_{12}\right)$ such that $\Delta g=1 /\left(r_{1} r_{2}\right)$

Explicit evaluation of the potentials at a given order II

Poisson integral of $\partial_{k} V \partial_{i} V_{k}$

- explicit expression of the source

$$
G^{2} m_{1} \varepsilon_{k l i} \frac{n_{1}^{k}}{r_{1}^{5}} S_{1}^{\prime}+G^{2} m_{2} \varepsilon_{k l m} \partial_{k}\left(\frac{1}{r_{2}}\right) \partial_{i m}\left(\frac{1}{r_{1}}\right) S_{1}^{\prime}+1 \leftrightarrow 2
$$

- rewriting of the self and interaction terms using $\partial_{i} r_{1}^{p}=-\partial_{1 i} r_{1}^{p}$
$n_{1}^{k} / r_{1}^{5}=\partial_{1 k}\left(4 r_{1}^{4}\right)^{-1}$ and $\partial_{k} r_{2}^{-1} \partial_{i m} r_{1}^{-1}=-\partial_{2 k} r_{2}^{-1} \partial_{1 i m} r_{1}^{-1}$
- computation of the elementary Poisson integrals $\Delta^{-1} r_{1}^{-4}=r_{1}^{-2} / 2$ and $\Delta^{-1}\left(r_{1} r_{2}\right)^{-1}=g+$ const
(3) Derivation of $g_{\mu \nu}$ and $T^{\mu \nu}$ needed for the next order + evolution equations for elimination of higher order ∂_{t} 's
(9) Iteration of the whole procedure

2.5PN equations of motion and precession equations

Papapetrou equations neglecting SS interactions

- equations of motion \Leftrightarrow integral form of $\nabla_{\nu} T^{\mu \nu}=0$

$$
m_{A} c \frac{D u^{\mu}}{d \tau_{A}}=-\frac{1}{2} S_{A}^{\lambda \rho} u_{A}^{\nu} R_{A \nu \lambda \rho}^{\mu}+\mathcal{O}\left(S^{2} / c^{4}\right)
$$

deviation from the geodesic motion due to SO interaction

- equations of precession $\leftarrow \mathrm{SSC} \&$ link $p_{A}^{\mu} / S_{A}^{\mu \nu}$

$$
\frac{D S_{A}^{\mu \nu}}{c d \tau_{A}}=\underset{\text { parallel transport of the spin tensor }}{\mathcal{O}\left(S^{2} / c^{4}\right)}
$$

PN equations for a self-gravitating system derived in 3 steps

- insertion of the 2PN metric in the Papapetrou equations at \mathbf{x}
- Hadamard regularization at \mathbf{y}_{A}
- elimination of higher order $d / d t \rightarrow \dot{\mathbf{v}}_{A}=\mathbf{a}_{A}\left(r_{12}, \mathbf{n}_{12}, \mathbf{v}_{B}, \mathbf{S}_{B}\right)$ idem for $\dot{\mathbf{S}}_{A}$

Conserved quantities

computation of the binding energy E

(1) gravitational radiation switched off
(2) E decomposed as the sum of $E_{2 \mathrm{PN}}+E_{(5) \mathrm{SO}} / c^{5}$

- $E_{2 P N}$ including the 1.5 PN SO interactions already known SS contributions ignored
- $E_{(5) \text { so }}$ searched under the form

$$
E_{(5) \text { SO }}=\left(S_{1}, n_{12}, v_{1}\right)\left(\alpha_{1}^{\left(v_{1}^{4}\right)} v_{1}^{4}+\alpha_{1}^{v_{1}^{2}\left(v_{1} v_{2}\right)} v_{1}^{2}\left(v_{1} v_{2}\right)+\ldots\right) / r_{12}
$$

+ all other terms hom. to $S_{1} v^{5} / r$ \& invariant under trans./rot./parity $+1 \leftrightarrow 2$
(3) $d E / d t$ imposed to be 0
\hookrightarrow coefficients α determined uniquely
Similar computation for linear momentum \mathbf{P}, angular momentum $\mathbf{J}=\mathbf{L}+\left(\mathbf{S}_{1}+\mathbf{S}_{2}\right) / c$ and $\mathbf{G} / d \mathbf{G} / d t=\mathbf{P}$

Reduction to circular motion

impossibility of rigorously circular motion for spinning binaries $\}$
in $C M \mathbf{L} \propto \mathbf{n}_{12} \times\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right) \perp$ orbital plane
\mathbf{S}_{A} precession about $\mathbf{J} \Rightarrow$ precession of $\mathbf{L}=\mathbf{J}-\mathbf{S}_{1} / c-\mathbf{S}_{2} / c$ precession of the orbital plane
definition of a circular-like motion

- $r_{12}=r=\mathrm{cst}$
- \langle component $(a J)$ responsible for the precession $\rangle=0$

Reduction to circular motion in 3 steps
(1) CM frame imposed by $\mathbf{G}=m_{1} \mathbf{y}_{1}+m_{2} \mathbf{y}_{2}+\ldots \equiv \mathcal{O}\left(1 / c^{6}\right)$
\hookrightarrow investigation on relative motion sufficient
Notation: $\mathbf{x}=\mathbf{y}_{1}-\mathbf{y}_{2}, \mathbf{n}=\mathbf{x} / r, \mathbf{v}=\mathbf{v}_{1}-\mathbf{v}_{2}$
(2) ($n v$) taken to be zero
(3) v^{2} replaced by its value as a function of r using the EOM

Radiative metric and GW flux

- Gravitational wave-form in the radiative zone $R \gg \lambda$ gauge invariance of the TT part of $\delta g_{\mu \nu}$ at rad. future inf. \mathcal{I}^{+} first term of the multipole expansion of the form

$$
\begin{aligned}
h_{i j}^{\mathrm{TT}}(\mathbf{X}, T) & =\frac{4 G}{c^{4} R} P_{i j a b}^{\mathrm{TT}}(\mathbf{N}) \sum_{\ell=2}^{+\infty} \frac{1}{c^{\ell-2} \ell!}\left\{N_{i_{1}} \ldots N_{i_{\ell-2}} U_{a b i_{1} \ldots i_{\ell-2}}\right. \\
& \left.-\frac{2 \ell}{c(2 \ell+1)} N_{c} N_{i_{1} \ldots} N_{i_{\ell-2}} \epsilon_{c d(a} V_{b) i_{1} \ldots i_{\ell-2}}\right\}(T-R / c)
\end{aligned}
$$

with $U_{i_{1} \ldots i_{\ell}}, V_{i_{1} \ldots i_{\ell}}=$ radiative multipole moments

- Flux expression (// electromagnetism)

$$
\mathcal{L}=\frac{c^{3}}{32 \pi G} \int d S \partial_{t} h_{j k}^{\top \top} \partial_{t} h_{j k}^{\top \top}
$$

Link with the source multipole moments

qualitative definition

set of multipole moments $I_{i_{1} \ldots i_{\ell}}, J_{i_{1} \ldots i_{\ell}}$ parameterizing the vacuum linear metric in harmonic gauge

consequences

- far-zone $h^{\mu \nu}$ obtained by solving iteratively post-linear EE $\Rightarrow h^{\mu \nu}=\sum_{n=1}^{+\infty} G^{n} h_{(n)}^{\mu \nu}$ parametrized by $I_{i_{1} \ldots i_{\ell}}$, $J_{i_{1} \ldots i_{\ell}}$ and some gauge transformation
- link between $U_{i_{1} \ldots i_{\ell}}, V_{i_{1} \ldots i_{\ell}}$ and the source multipole moments
- relation between $I_{i_{1} \ldots i_{\ell}}, J_{i_{1} \ldots i_{\ell}}$ and the source $|g| T^{\mu \nu}+\Lambda^{\mu \nu}$ known (asymptotic matching)

implications for computing the SO terms at 2.5PN

sufficient to compute $\left(l_{i j}\right)_{2.5 \mathrm{PN}}^{\mathrm{SO}},\left(J_{i j}\right)_{1.5 \mathrm{PN}}^{\mathrm{SO}},\left(l_{i j k}\right)_{1.5 \mathrm{PN}}^{\mathrm{SO}},\left(J_{i j k}\right)_{0.5 \mathrm{PN}}^{\mathrm{SO}}$

Approximate expression of the source multipole moments

$$
\begin{aligned}
& \text { Symmetric and Trace-Free (STF) part of } x_{i} x_{j} \\
& I_{i j}= \underset{B=0}{\mathrm{FP}} \int d^{3} \mathbf{x}|\mathbf{x}|^{B}\left\{\hat{\hat{x}}_{i j} \Sigma+\frac{1}{14 c^{2}} \hat{x}_{i j}|\mathbf{x}|^{2} \ddot{\Sigma}+\frac{1}{504 c^{4}} \hat{x}_{i j}|\mathbf{x}|^{4} \check{\Sigma}\right. \\
&\left.-\frac{20}{21 c^{2}} \hat{x}_{i j k} \dot{\Sigma}_{k}-\frac{10}{189 c^{4}} \hat{x}_{i j k}|\mathbf{x}|^{2} \dddot{\Sigma}_{k}+\frac{5}{54 c^{4}} \hat{x}_{i j k \mid} \ddot{\Sigma}_{k l}\right\}+\mathcal{O}\left(\frac{1}{c^{6}}\right) \\
& J_{i j}= \underset{B=0}{ } \varepsilon_{a b\langle i} \int d^{3} \mathbf{x}|\mathbf{x}|^{B}\left\{\hat{x}_{j\rangle a} \Sigma_{b}+\frac{1}{14 c^{2}} \hat{x}_{j\rangle a}|\mathbf{x}|^{2} \ddot{\Sigma}_{b}-\frac{5}{28 c^{2}} \hat{x}_{j\rangle a c} \dot{\Sigma}_{b c}\right\}+\mathcal{O}\left(\frac{1}{c^{4}}\right)
\end{aligned}
$$

- $\Sigma_{\mu \nu}=\Sigma_{\mu \nu}\left[\sigma_{\alpha \beta}, V, V_{i}, \hat{W}_{i j}, \hat{R}_{i}, \hat{X}\right]$
- Source regularized by inserting a kernel $|\mathbf{x}|^{B}, B \in \mathbb{C}$ Integral over source $=$ some function of $B, I(B)$ extended by analytic continuation

Definition

$\mathrm{FP}_{B=0} I(B)=$ limit $B \rightarrow 0$ of the non polar part of $I(B)$
\hookrightarrow cure of the divergences at infinity

Spin terms in the source quadrupole moments I

(1) Source with compact support: computed by using the properties of $\delta\left(\mathbf{x}-\mathbf{y}_{A}\right), \partial_{\mu} \delta\left(\mathbf{x}-\mathbf{y}_{A}\right)$
(2) Source with quadratic support: obtained by means of the elementary integral

$$
\begin{aligned}
Y_{L}\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right) & =-\frac{1}{2 \pi} \mathrm{FP} \int d^{3} \mathbf{x}|\mathbf{x}|^{B} \mathrm{STF}_{i_{1} \ldots i_{\ell}} x^{i_{1}} \ldots x^{i_{\ell}} /\left(r_{1} r_{2}\right) \\
& =\mathrm{STF}_{i_{1} \ldots i_{\ell}} \frac{r_{12}}{\ell+1} \sum_{p=0}^{\ell} y_{1}^{i_{1}} \ldots y_{1}^{i_{p}} y_{2}^{i_{p+1}} \ldots y_{2}^{i_{\ell}}
\end{aligned}
$$

Spin terms in the source quadrupole moments II

Working on the source

- expression of the source simplified by integration by part \hookleftarrow surface terms discarded with great care
- explicit expression of source pieces of the form $\hat{x}^{L} \partial_{i \ldots .} r_{1}^{-1} \partial_{j \ldots} r_{2}^{-1}$
- rewriting of the interaction terms using $\partial_{i} r_{1}^{p}=-\partial_{1 i} r_{1}^{p}$
- FP regularization \rightarrow possibility of permuting \int and $\partial_{1 i}$ \hookrightarrow result expressed solely in terms of the function Y_{L}

Typical result

$$
J_{S^{i j}}^{(\mathrm{NC})}=\frac{G m_{2}}{c^{3}} \varepsilon_{k l\langle i}\left\{-\varepsilon_{k m n} S_{1}^{m} \underset{2}{\partial_{k}}{\underset{1}{1}}_{\partial_{l n}} Y_{j\rangle k}+\varepsilon_{l m n} S_{1}^{m}{\underset{2}{2}}_{\partial_{1}}^{\partial_{k n}} Y_{j\rangle k}\right\}+1 \leftrightarrow 2+\mathcal{O}\left(\frac{1}{c^{5}}\right)
$$

Flux and energy as a function of ω

- absence of non-linear effects \rightarrow

$$
\mathcal{L}=\frac{G}{c^{5}}\left\{\frac{1}{5} \dddot{i}_{i j} \dddot{I}_{i j}+\frac{1}{c^{2}}\left[\frac{1}{189} \dddot{I}_{i j k} \dddot{l}_{i j k}+\frac{16}{45} \dddot{J}_{i j} \dddot{J}_{i j}\right]+\frac{\dddot{J}_{i j k} \dddot{J}_{i j k}}{84 c^{4}}\right\}
$$

+ terms not contributing to the spins at 2.5 PN order
after reduction to the center of mass for circular orbits
$\omega=\omega(r)$ and $\mathcal{L}=\mathcal{L}(r)$ known $\rightarrow \mathcal{L}=\mathcal{L}(x)$ with

$$
x=\left(G m \omega / c^{3}\right)^{2 / 3}
$$

- $\omega=\omega(r)$ and $E=E(r)$ known $\rightarrow E=E(x)$

result dependence

total mass m , mass difference $\delta m, \nu=\mu / m, x$, the total spin \mathbf{S},
$\boldsymbol{\Sigma} \equiv m\left(\mathbf{S}_{2} / m_{2}-\mathbf{S}_{1} / m_{1}\right)$

Results for $\mathcal{L}(x), E(x)$, and $\dot{\omega}$

$$
\begin{aligned}
& E=- \frac{\mu c^{2} x}{2}\left\{1+x\left(-\frac{3}{4}-\frac{\nu}{12}\right)+x^{2}\left(-\frac{27}{8}+\frac{19}{8} \nu-\frac{\nu^{2}}{24}\right)+\frac{x^{3 / 2}}{G m^{2}}\left[\frac{14}{3} S_{z}+2 \frac{\delta m}{m} \Sigma_{z}\right]\right. \\
&\left.+\frac{x^{5 / 2}}{G m^{2}}\left[\left(13-\frac{49}{9} \nu\right) S_{z}+\left(5-\frac{8}{3} \nu\right) \frac{\delta m}{m} \Sigma_{z}\right]+\mathcal{O}\left(\frac{1}{c^{6}}\right)\right\} \\
& \mathcal{L}=\frac{32}{5} \frac{c^{5}}{G} x^{5} \nu^{2}\left\{1+x\left(-\frac{1247}{336}-\frac{35}{12} \nu\right)+4 \pi x^{3 / 2}+x^{2}\left(-\frac{44711}{9072}+\frac{9271}{504} \nu+\frac{65}{18} \nu^{2}\right)\right. \\
&+\pi x^{5 / 2}\left(-\frac{8191}{672}-\frac{583}{24} \nu\right)+\frac{x^{3 / 2}}{G m^{2}}\left[-4 S_{z}-\frac{5}{4} \frac{\delta m}{m} \Sigma_{z}\right] \\
&\left.+\frac{x^{5 / 2}}{G m^{2}}\left[\left(\frac{95}{28}+\frac{239}{63} \nu\right) S_{z}+\left(\frac{31}{16}-\frac{109}{28} \nu\right) \frac{\delta m}{m} \Sigma_{z}\right]+\mathcal{O}\left(\frac{1}{c^{6}}\right)\right\} \\
& \frac{\dot{\omega}}{\omega^{2}}=\frac{96}{5} \nu x^{5 / 2}\left\{1+x\left(-\frac{743}{336}-\frac{11}{4} \nu\right)+4 \pi x^{3 / 2}+x^{2}\left(\frac{34103}{18144}+\frac{13661}{2016} \nu+\frac{59}{18} \nu^{2}\right)\right. \\
&+\pi x^{5 / 2}\left(-\frac{4159}{672}-\frac{189}{8} \nu\right)+\frac{x^{3 / 2}}{G m^{2}}\left[-\frac{47}{3} S_{z}-\frac{25}{4} \frac{\delta m}{m} \Sigma_{z}\right] \\
&\left.+\frac{x^{5 / 2}}{G m^{2}}\left[\left(-\frac{40127}{1008}+\frac{1465}{28} \nu\right) S_{z}+\left(-\frac{583}{42}+\frac{3049}{168} \nu\right) \frac{\delta m}{m} \Sigma_{z}\right]+\mathcal{O}\left(\frac{1}{c^{6}}\right)\right\}
\end{aligned}
$$

Relevance of the SO effects at 2.5 PN order I

Table: Post-Newtonian contributions to the number of GW cycles accumulated from $\omega_{\min }=\pi \times 10 \mathrm{~Hz}$ to $\omega_{\max }=\omega_{\mathrm{ISCO}}=1 /\left(6^{3 / 2} \mathrm{~m}\right)$ for binaries detectable by LIGO and Virgo. For comparison, we add the contributions of spin-spin terms at 2PN order and non-spin terms at 3PN and 3.5PN orders
Notation: $S_{1}=G m_{1}^{2} \chi_{1}, \kappa_{1}=\left(S_{1} L\right) / L, S_{1} S_{2} \xi=\left(S_{1} S_{2}\right)$

	$(10+1.4) M_{\odot}$	$(10+10) M_{\odot}$
Newtonian	3577	601
1PN	+213	+59.3
1.5PN	$-181+114 \kappa_{1} \chi_{1}+11.8 \kappa_{2} \chi_{2}$	$-51.4+16.0 \kappa_{1} \chi_{1}+16.0 \kappa_{2} \chi_{2}$
2PN	$+9.8-4.4 \kappa_{1} \kappa_{2} \chi_{1} \chi_{2}+1.5 \xi \chi_{1} \chi_{2}$	$+4.1-3.3 \kappa_{1} \kappa_{2} \chi_{1} \chi_{2}+1.1 \xi \chi_{1} \chi_{2}$
2.5PN	$-20+32.7 \kappa_{1} \chi_{1}+3.2 \kappa_{2} \chi_{2}$	$-7.1+6.0 \kappa_{1} \chi_{1}+6.0 \kappa_{2} \chi_{2}$
3PN	+2.3	+2.2
3.5PN	-1.8	-0.8

Relevance of the SO effects at 2.5PN order II

Table: post-Newtonian contributions to the number of GW cycles accumulated until $\omega_{\text {max }}=\omega_{\text {ISCO }}$ over one year of integration, for binaries detectable by LISA
Notation: $S_{1}=G m_{1}^{2} \chi_{1}, \kappa_{1}=\left(S_{1} L\right) / L, S_{1} S_{2} \xi=\left(S_{1} S_{2}\right)$

	$\left(10^{6}+10^{6}\right) M_{\odot}$	$\left(10^{6}+10^{5}\right) M_{\odot}$
Newt.	2267	4985
1PN	+134	+281
1.5PN	$-92.4+28.8 \kappa_{1} \chi_{1}+28.8 \kappa_{2} \chi_{2}$	$-243+161 \kappa_{1} \chi_{1}+11.5 \kappa_{2} \chi_{2}$
2PN	$6.0-4.8 \kappa_{1} \kappa_{2} \chi_{1} \chi_{2}+1.7 \xi \chi_{1} \chi_{2}$	$12.5-4.4 \kappa_{1} \kappa_{2} \chi_{1} \chi_{2}+1.5 \xi \chi_{1} \chi_{2}$
2.5PN	$-9.0+7.6 \kappa_{1} \chi_{1}+7.6 \kappa_{2} \chi_{2}$	$-26.5+44.8 \kappa_{1} \chi_{1}+3.0 \kappa_{2} \chi_{2}$
3PN	+2.3	+2.3
3.5PN	-0.9	-2.3

Consequences

data analysis with SO corrections at 2.5PN needed for some mass configurations: SS effects at $2 \mathrm{PN} \lesssim \mathrm{SO}$ at 2.5 PN

Spin variables with constant magnitude

Existence of a SSC

arbitrariness in the spin definition
\Rightarrow possibility to redefine the spin : chosen such that $S_{1}^{2}=$ const

Consequences

- $\mathbf{S}_{1}^{\mathbf{c}}=\mathbf{S}_{1}+\frac{1}{c^{2}}\left[-\frac{1}{2}\left(v_{1} S_{1}\right) \mathbf{v}_{1}+\frac{G m_{2}}{r_{12}} \mathbf{S}_{1}\right]+2$ PN corrections $+\mathcal{O}\left(\frac{1}{c^{5}}\right)$
- new orbital momentum $\mathbf{L}^{c}=\mathbf{J}-\mathbf{S}_{1}^{c} / c-\mathbf{S}_{2}^{c} / c$
- precession equations of the form

$$
\frac{d \mathbf{S}_{1}^{c}}{d t}=\boldsymbol{\Omega}_{1} \times \mathbf{S}_{1}^{c} \quad \frac{d \mathbf{S}_{2}^{c}}{d t}=\boldsymbol{\Omega}_{2} \times \mathbf{S}_{2}^{c}
$$

Conclusion

- GW phase obtained by
(1) Integration of the system giving $d \omega / d t, d S_{1}^{c} / d t, d S_{2}^{c} / d t$
(2) addition of the well-known precessional correction
- Use of spins with constant magnitude recommended
\leftarrow equivalence with the template space built with waveforms involving the variables \mathbf{S}_{1} and \mathbf{S}_{2}
- Crude estimation suggests the importance of the SO terms in the 2.5 PN phase
- Seems that spins can be determined rather accurately with the 2.5 PN corrections
ν loses accuracy [Arun, Buonanno, F., Ochsner, in progress]
Open issues: non linear spin effects, 2.5 amplitudes with spins, ...

