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Targeted search and matched filtering
notation: sampled signals, x ≡ {xk ≡ x(k/fs), k = 0 . . .N − 1}

detection = decide which hypothesis fits the data

(H0) xk = nk white Gaussian noise

(H1) xk = sk + nk signal+noise

define a statistic λ(x) ≶ η ↔ choose H0 or H1, partition (here, of RN)
which λ is best? criterion: Neymann-Pearson (NP), error prob.

minimize P(λ(x) < η|H1) for a given P(λ(x) > η|H0)

solution = likelihood ratio λ(x) =
P(x|H1)

P(x|H0)

for our problem, log(λ(x)) ∝ ‖x− s‖2
2 − ‖x‖2

2

simplify: `(x) = 〈x, s〉 =
N−1∑
k=0

xksk

matched filter: correlation of the
data with a template s
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Unknown parameters and bank of matched filters
when the signal s depends on unknown parameters p . . .

likelihood ratio: λ(x;p) =
P(x|H1,p)

P(x|H0)

NP uniformly for all values of p? no solution in general

sub-optimal but works well: “generalized likelihood ratio test”
idea: replace p by an (ML) estimate p̂ = argmaxpλ(x;p)

two ways for doing this

1 if analytical expression p̂(x) exists,
replace `(x) = λ(x; p̂(x))

2 if not, maximize numerically (exhaustive search):
`(x) = maxp λ(x;p)

for our problem, this is a bank of matched filters
targeted search = matched filter bank obtained from Physics

Chassande-Mottin BCC
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Why exploratory searches?

• targeted search is sensitive, strength and also weakness
• require reliable and precise model
• does not incorporate model uncertainties

• data are precious (expensive!): get the most from them
• look for speculative or unknown sources!

• moral: be exploratory! let the model be more “general” . . .
• relax assumptions = increase robustness

• . . . but not too general! be “quasi-physical”
• exclude non-feasible/unlikely candidates
• use “good sense” assumption to restrict the model

note: exploration useful for detection, not for identification and
interpretation which needs complete physical model!
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GW unmodeled chirps: motivations

• basic idea: GW = system “radiates away its asymmetries”
if orbiting and slowly moving → quasi-periodic GWs (=chirps)
GW chirps are generic signatures of orbiting systems

• this information is robust: this remains true even we don’t
know the system dynamics in detailed.

• consequence: search for chirps in “general”
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GW (unmodeled) chirps:generic model

• generic model for chirps
GW chirps: s(t) ≡ A cos(φ(t) + ϕ0)
unknown amplitude A and initial phase ϕ0

• unknown phase evolution φ(t)
exclude non-physical with “good sense” constraint:
impose |ḟ (t)| ≤ F ′ and |f̈ (t)| ≤ F ′′ where f (t) = (2π)−1φ̇(t).

• typical duration T ∼ few sec in detector band
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Chirps in the time-frequency plane (1)

heuristic: chirp = “filiform” pattern in time-frequency plane
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Two degrees of freedom (2)

which TF representation?
spectrogram, wavelets,
Wigner-Ville, Cohen,
reassignment, etc.

which pattern search?
Hough, “crazy climbers”,
“snakes”, road tracker in satellite
images, etc.

Chassande-Mottin BCC



Forewords
Chirps

Conciliate both viewpoints

Time-frequency heuristics
Quadrature matched filtering

Multiple approaches. . . (3)

• Morvidone & Torrésani, IJWMIP, 2003

• Sylvestre, Phys. Rev. D, grqc/0210043

• Anderson & Balasubramanian, Phys. Rev. D, grqc/9905023

• Carmona, Hwang & Torrésani, IEEE SP, 1998

• Chassande-Mottin & Flandrin, ACHA, 1998

• Pinto et al., Proc. of GWDAW, 1997

• Innocent & Torrésani, ACHA, 1997
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Chirps and quadrature matched filtering

let us apply generalized likelihood ratio test to chirps
we have 3 unknown parameters p = {A, ϕ0, φ(t)}
two simple ones A, ϕ0 = analytical replacement

log(max
A,φ0

λ) ∝

∣∣∣∣∣
N−1∑
k=0

xk exp iφk

∣∣∣∣∣
2

≡ `(x , φ) ≶ η

quadrature matched filtering
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When chirp phase is not known. . . (2)

• last unknown parameter φ(t), how to do maxφ `(x , φ)?

• analytical maximization impossible → numerical

• sampling of the set of possible phase functions: template grids

• griding must be sufficiently tight, how to be sure?

we “receive” xk=̂A cos(φk + ϕ0) and we “search” with template φ∗k

distance: ∆`(φ, φ∗) ≡ `(s, φ)− `(s, φ∗)

`(s, φ)

the distance between two grid nodes should be small

Chassande-Mottin BCC



Forewords
Chirps

Conciliate both viewpoints

Time-frequency heuristics
Quadrature matched filtering

When chirp phase is not known. . . (2)

• last unknown parameter φ(t), how to do maxφ `(x , φ)?

• analytical maximization impossible → numerical

• sampling of the set of possible phase functions: template grids

• griding must be sufficiently tight, how to be sure?

we “receive” xk=̂A cos(φk + ϕ0) and we “search” with template φ∗k

distance: ∆`(φ, φ∗) ≡ `(s, φ)− `(s, φ∗)

`(s, φ)

the distance between two grid nodes should be small

Chassande-Mottin BCC



Forewords
Chirps

Conciliate both viewpoints

Time-frequency heuristics
Quadrature matched filtering

When chirp phase is not known. . . (2)

• last unknown parameter φ(t), how to do maxφ `(x , φ)?

• analytical maximization impossible → numerical

• sampling of the set of possible phase functions: template grids

• griding must be sufficiently tight, how to be sure?

we “receive” xk=̂A cos(φk + ϕ0) and we “search” with template φ∗k

distance: ∆`(φ, φ∗) ≡ `(s, φ)− `(s, φ∗)

`(s, φ)

the distance between two grid nodes should be small

Chassande-Mottin BCC



Forewords
Chirps

Conciliate both viewpoints

Time-frequency heuristics
Quadrature matched filtering

When chirp phase is not known. . . (2)

• last unknown parameter φ(t), how to do maxφ `(x , φ)?

• analytical maximization impossible → numerical

• sampling of the set of possible phase functions: template grids

• griding must be sufficiently tight, how to be sure?

we “receive” xk=̂A cos(φk + ϕ0) and we “search” with template φ∗k

distance: ∆`(φ, φ∗) ≡ `(s, φ)− `(s, φ∗)

`(s, φ)

the distance between two grid nodes should be small

Chassande-Mottin BCC



Forewords
Chirps

Conciliate both viewpoints

Time-frequency heuristics
Quadrature matched filtering

When chirp phase is not known. . . (2)

• last unknown parameter φ(t), how to do maxφ `(x , φ)?

• analytical maximization impossible → numerical

• sampling of the set of possible phase functions: template grids

• griding must be sufficiently tight, how to be sure?

we “receive” xk=̂A cos(φk + ϕ0) and we “search” with template φ∗k

distance: ∆`(φ, φ∗) ≡ `(s, φ)− `(s, φ∗)

`(s, φ)

the distance between two grid nodes should be small

Chassande-Mottin BCC



Forewords
Chirps

Conciliate both viewpoints
Chirplet chains, Phys. Rev. D73, 042003, 2006

Conciliate viewpoints?

Does this method apply in general?

1 can we build a bank of matched filters for GW chirps?

2 with which templates?

Chassande-Mottin BCC
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Chirplet chains (CC), Phys. Rev. D73, 042003

CCs are piecewise linear chirps

N −1
t

N −1
f

f /2s

f

t

1

frequency

1

time

0

0 T

... ... ...

...

...

1 chirplet

1st order regularity

2nd order regularity

interval  0

bin 0

chirplet chain

TF domain 

free parameters: Nt , Nf , N ′
r , N ′′

r
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CCs form a tight template grid

if N ′
r and N ′′

r are large enough, for all smooth chirp φ, there exists
a CC φ∗ such that

∆`(φ, φ∗) . C

1

2

(√
3F ′′T 3

Nt

)2

+
1

2

(
2N

Nf

)2
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CCs form a tight template grid
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T time
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CCs form a tight template grid

if N ′
r and N ′′

r are large enough, for all smooth chirp φ, there exists
a CC φ∗ such that

∆`(φ, φ∗) . C

1

2

(√
3F ′′T 3

Nt

)2

+
1

2

(
2N

Nf

)2

CC grid is tight!

maxall GW chirps{`} ≈ maxall CCs{`}

search over CCs? the number of CCs is finite!
. . . but exponentially growing with Nt (combinatorial)

CC grid is too large to be searched exhaustively!
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best CC, step (1): maps to time-frequency

scalar products can be expressed in time or in frequency

Parseval:

∫
x(t)y∗(t) dt =

∫
X (f )Y ∗(f ) df

or in time-frequency

Moyal:

∣∣∣∣∫ x(t)y∗(t) dt

∣∣∣∣2 =

∫∫
Wx(t, f )W ∗

y (t, f ) dt df

for discrete signals, discrete Wigner-Ville

Moyal: ` =
1

2N

∑
n

∑
m

Wx(n,m)We(n,m)

Chassande-Mottin BCC
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best CC, step (2): template WV is simple

We is almost Dirac ≈ δ(m −m
(cc)
n )

` ∝
∑

n

∑
m Wx(n,m)We(n,m)

path integral : ` ≈
∑

n Wx(n,m
(cc)
n )

maxφ{`} is a longest TF path problem
dynamic programming solves this in polynomial time

which TFR ? DWV which pattern search? largest path int. + DP

Chassande-Mottin BCC
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best CC: check
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best CC: performance, ROCs (1)

ROC: detection prob. vs false alarm
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Search
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best CC: performance, ROCs (2)
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“clairvoyant” observer
knows incident chirp a
priori

the SNR of
“clairvoyant” observer
is set such that ROC
fits the other.

reduction factor in the sight distance wrt “clairvoyant” ≈ 2.6
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Concluding remarks

• best CC search

• design a template grid which covers the entire set of
(“regular”) GW chirps

• use original time-frequency scheme to search efficiently
through this grid

• robustness comes from the large size of this grid, not from
specific property of time-frequency representation

• articles, codes and other resources available at
http://www.apc.univ-paris7.fr/∼ecm

Chassande-Mottin BCC
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