A view of spacetime near spatial infinity

Juan A. Valiente Kroon, School of Mathematical Sciences,
Queen Mary, University of London, United Kingdom.

November 24th, 2006.

The i^{0} problem

- There is a lack of general results about the evolution of data near spatial infinity.

- One of the difficulties of the analysis lies in the fact that on an initial hypersurface \mathcal{S}, the rescaled conformal Weyl tensor behaves like:

$$
d^{\mu}{ }_{\nu \lambda \rho}=\Omega C_{\nu \lambda \rho}^{\mu}=O\left(r^{-3}\right) \text { as } r \rightarrow 0 .
$$

- In order to overcome this difficulty, one has to resolve the structure contained in the point i^{0}.

Blow-up of i^{0} into the cylinder at spatial infinitya

The conformal factor is given by:
where

$$
\begin{gathered}
\Omega=f(\rho, \theta, \varphi)\left(1-\tau^{2}\right), \\
f(\rho, \theta, \varphi)=\rho+O\left(\rho^{2}\right),
\end{gathered}
$$

is given in terms of initial data on \mathcal{S}.

[^0]For suitable classes of initial data $\left(S, h_{\alpha \beta}, \chi_{\alpha \beta}\right)$-e.g.

- time symmetric data $\left(\chi_{\alpha \beta}=0\right)$ with smooth conformal metric,
- time asymmetric $\left(\chi_{\alpha \beta} \neq 0\right)$, conformally flat data,
- stationary data, and ...
the standard Cauchy problem can be reformulated as a regular finite initial value problem for the conformal field equations.

Features:

- the data and equations are regular on a manifold with boundary;
- spacelike and null infinity have a finite representation with their structure and location known a priori.

About the initial data:

- Construct maximal initial data $\left(\tilde{h}_{\alpha \beta}, \tilde{\chi}_{\alpha \beta}\right)$ by means of the conformal Ansatz:

$$
\tilde{h}_{\alpha \beta}=\vartheta^{4} h_{\alpha \beta}, \quad \tilde{\chi}_{\alpha \beta}=\vartheta^{-2} \psi_{\alpha \beta}
$$

so that the constraint equations reduce to:

$$
\begin{aligned}
& D^{\alpha} \psi_{\alpha \beta}=0 \\
& \left(D^{\alpha} D_{\alpha}-\frac{1}{8} r\right) \vartheta=\frac{1}{8} \psi_{\alpha \beta} \psi^{\alpha \beta} \vartheta^{-7}
\end{aligned}
$$

- Consider conformally flat initial data:

$$
h_{\alpha \beta}=\vartheta^{4} \delta_{\alpha \beta} .
$$

- To solve the momentum constraint write:

$$
\psi_{\alpha \beta}=\psi_{\alpha \beta}^{A}+\psi_{\alpha \beta}^{J}+\psi_{\alpha \beta}^{Q}+\psi_{\alpha \beta}^{\lambda},
$$

where

$$
\begin{aligned}
\psi_{\alpha \beta}^{A} & =\frac{A}{|x|^{3}}\left(3 n_{\alpha} n_{\beta}-\delta_{\alpha \beta}\right), \\
\psi_{\alpha \beta}^{J} & =\frac{3}{|x|^{3}}\left(n_{\beta} \epsilon_{\gamma \alpha \rho} J^{\rho} n^{\gamma}+n_{\alpha} \epsilon_{\rho \beta \gamma} J^{\gamma} n^{\rho}\right), \\
\psi_{\alpha \beta}^{Q} & =\frac{3}{2|x|^{2}}\left(Q_{\alpha} n_{\beta}+Q_{\beta} n_{\alpha}-\left(\delta_{\alpha \beta}-n_{\alpha} n_{\beta}\right) Q^{\gamma} n_{\gamma}\right) \\
\psi_{\alpha \beta}^{\lambda} & =O(1 /|x|) \quad \text { (higher multipoles) } .
\end{aligned}
$$

- The term $\psi_{\alpha \beta}^{\lambda}$ is calculated out of a smooth complex function λ.
- If

$$
\lambda=\lambda^{b} / \rho+\lambda^{\natural}
$$

with $\lambda^{b}, \lambda^{\natural}$ smooth, then the conformal factor ϑ admits the parametrisation

$$
\vartheta=\frac{1}{\rho}+W
$$

with $W(i)=m / 2$ and expandible in powers of ρ solely ${ }^{\text {a }}$.

[^1]For later use, we define the tensor

$$
C_{\alpha \beta}^{R}=D_{\gamma} \chi_{\delta(\alpha}^{R} \epsilon^{\gamma \delta}{ }_{\beta)},
$$

where $\chi_{\alpha \beta}^{R}=\theta^{-4} \psi_{\alpha \beta}^{R}$ is the part of the second fundamental form arising from the real part of λ.

For later use, we define the tensor

$$
C_{\alpha \beta}^{R}=D_{\gamma} \chi_{\delta(\alpha}^{R} \epsilon_{\beta)}^{\gamma \delta},
$$

where $\chi_{\alpha \beta}^{R}=\theta^{-4} \psi_{\alpha \beta}^{R}$ is the part of the second fundamental form arising from the real part of λ.

- $C_{\alpha \beta}^{R}$ can be thought of as the magnetic part of the Weyl tensor arising from $\operatorname{Re}(\lambda)$.

The conformal propagation equations near spatial infinity:

- The unknowns are given by the components of the frame, connection, and Ricci tensor

$$
v=\left(c_{A B}^{\mu}, \Gamma_{A B C D}, \Phi_{A B C D}\right),
$$

and the components of the Weyl spinor

$$
\phi=\left(\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}\right) .
$$

- The evolution equations are given by:

$$
\begin{aligned}
& \partial_{\tau} v=K v+Q(v, v)+L \phi, \\
& A^{0} \partial_{\tau} \phi+A^{\alpha} \partial_{\alpha} \phi=B\left(\Gamma_{A B C D}\right) \phi,
\end{aligned}
$$

- The matrix associated to the ∂_{τ} term in the Bianchi propagation equations is given by:

$$
A^{0}=\sqrt{2} \operatorname{diag}(1-\tau, 1,1,1,1+\tau)
$$

- Thus, the equations degenerate at the sets where null infinity touches spatial infinity:

$$
I^{ \pm}=\{\rho=0, \tau= \pm 1\}
$$

- Standard methods of symmetric hyperbolic systems cannot be used to analyse the equations near $I^{ \pm}$.

Transport equations on I

- The procedure by which i^{0} is replaced by I leads to an unfolding of the evolution process near spatial infinity which permits an analysis to arbitrary order and in all detail.
- Consistent with our choice of initial data assume that the field quantities admit the following Taylor like expansions:

$$
v_{j} \sim \sum_{p \geq 0} \frac{1}{p!} v_{j}^{(p)}(\tau, \theta, \varphi) \rho^{p}, \quad \phi_{j} \sim \sum_{p \geq 0} \frac{1}{p!} \phi_{j}^{(p)}(\tau, \theta, \varphi) \rho^{p}
$$

Transport equations on I

- The procedure by which i^{0} is replaced by I leads to an unfolding of the evolution process near spatial infinity which permits an analysis to arbitrary order and in all detail.
- Consistent with our choice of initial data assume that the field quantities admit the following Taylor like expansions:

$$
v_{j} \sim \sum_{p \geq 0} \frac{1}{p!} v_{j}^{(p)}(\tau, \theta, \varphi) \rho^{p}, \quad \phi_{j} \sim \sum_{p \geq 0} \frac{1}{p!} \phi_{j}^{(p)}(\tau, \theta, \varphi) \rho^{p}
$$

- In order to determine the coefficients $v_{j}^{(p)}$ and $\phi_{j}^{(p)}$ exploit the fact that the cylinder I is a total characteristic of the propagation equations:
- The equations reduce to an interior system on I.
- Exploiting the total characteristic one can obtain a hierarchy of interior equations for the coefficients in the expansions:

$$
\begin{aligned}
& \partial_{\tau} v^{(p)}=K v^{(p)}+Q\left(v^{(0)}, v^{(p)}\right)+Q\left(v^{(p)}, v^{(0)}\right)+\sum_{j=1}^{p-1}\left(Q\left(v^{(j)}, v^{(p-j)}\right)+L^{(j)} \phi^{(p-j)}\right)+L^{(p)} \phi^{(0)}, \\
& A^{0,(0)} \partial_{\tau} \phi^{(p)}+A^{C,(p)} \partial_{C} \phi^{(p)}=B\left(\Gamma_{A B C D}^{(0)}\right) \phi^{(p)}+\sum_{j=1}^{p}\binom{p}{j}\left(B\left(\Gamma_{A B C D}^{(j)}\right) \phi^{(p-j)}-A^{\mu,(j)} \partial_{\mu} \phi^{(p-j)}\right),
\end{aligned}
$$

which can be solved recursively -the equations are linear and decoupled.

- $v_{j}^{(p)}$ and $\phi_{j}^{(p)}$ are completely determined by the expansions of the initial data on \mathcal{S} near spatial infinity.
- Thus, one can relate properties of the initial data with the asymptotic behaviour of the spacetime near null and spatial infinities.

Obstructions to the smoothness of null infinity:

Due to the degeneracy of the Bianchi propagation equations at the critical sets $I^{ \pm}$, any hint of non-smoothness is bound to arise first in the coefficients $\phi^{(p)}$.

Obstructions to the smoothness of null infinity:

Due to the degeneracy of the Bianchi propagation equations at the critical sets $I^{ \pm}$, any hint of non-smoothness is bound to arise first in the coefficients $\phi^{(p)}$.

- Decompose $\phi^{(p)}$ in spherical harmonics:

$$
\phi_{j}^{(p)}=\sum_{l=|j-2|}^{p} \sum_{m=-l}^{l} a_{j ; p, l, m}(\tau){ }_{j-2} Y_{l m}
$$

Obstructions to the smoothness of null infinity:

Due to the degeneracy of the Bianchi propagation equations at the critical sets $I^{ \pm}$, any hint of non-smoothness is bound to arise first in the coefficients $\phi^{(p)}$.

- Decompose $\phi^{(p)}$ in spherical harmonics:

$$
\phi_{j}^{(p)}=\sum_{l=|j-2|}^{p} \sum_{m=-l}^{l} a_{j ; p, l, m}(\tau){ }_{j-2} Y_{l m}
$$

- A first analysis of the equations at the level of the linearised Bianchi equations -spin 2 zero-rest-mass field— reveals that the coefficients

$$
a_{j ; p, p, m}(\tau) \longleftrightarrow{ }_{j-2} Y_{p m}, \quad m=-p, \ldots, p
$$

develop a certain type of logarithmic singularities at $\tau= \pm 1$.

- More precisely,

$$
\begin{aligned}
& a_{j ; p, p, m}(\tau)=A_{p}(1-\tau)^{p-2+j}(1+\tau)^{p+2-j} \ln (1-\tau) \\
&+B_{p}(1-\tau)^{p-2+j}(1+\tau)^{p+2-j} \ln (1+\tau)+(\text { polynom in } \tau)
\end{aligned}
$$

for $p=2,3, \ldots$..

- A_{p} and B_{p} depend on $\operatorname{Re}(\lambda)$ only.
- More precisely,

$$
\begin{aligned}
& a_{j ; p, p, m}(\tau)=A_{p}(1-\tau)^{p-2+j}(1+\tau)^{p+2-j} \ln (1-\tau) \\
&+B_{p}(1-\tau)^{p-2+j}(1+\tau)^{p+2-j} \ln (1+\tau)+(\text { polynom in } \tau)
\end{aligned}
$$

for $p=2,3, \ldots$.

- A_{p} and B_{p} depend on $\operatorname{Re}(\lambda)$ only.
- These singularities can be precluded by imposing a certain regularity condition at the initial hypersurface:

$$
\mathscr{C}\left(D_{\gamma_{p}} \cdots D_{\gamma_{1}} C_{\alpha \beta}^{R}\right)(i)=0
$$

for $p=0, \ldots, 5$, where \mathscr{C} denotes the symmetric tracefree part.

Further obstructions to the smoothness of null

 infinity:$$
\phi_{j}^{(p)}=\sum_{l=|j-2|}^{p} \sum_{m=-l}^{l} a_{j ; p, l, m}(\tau){ }_{j-2} Y_{l m}
$$

- Even if the regularity condition

$$
\mathscr{C}\left(D_{\gamma_{p}} \cdots D_{\gamma_{1}} C_{\alpha \beta}^{R}\right)(i)=0
$$

is satisfied, there are logarithmic singularities in the coefficients $a_{j ; p, l, m}$ for $p \geq 5$ at the critical sets $I^{ \pm}$.

Further obstructions to the smoothness of null infinity:

$$
\phi_{j}^{(p)}=\sum_{l=|j-2|}^{p} \sum_{m=-l}^{l} a_{j ; p, l, m}(\tau){ }_{j-2} Y_{l m}
$$

- Even if the regularity condition

$$
\mathscr{C}\left(D_{\gamma_{p}} \cdots D_{\gamma_{1}} C_{\alpha \beta}^{R}\right)(i)=0
$$

is satisfied, there are logarithmic singularities in the coefficients $a_{j ; p, l, m}$ for $p \geq 5$ at the critical sets $I^{ \pm}$.

- Associated with these singularities is a hierarchy of obstructions $\Upsilon_{p ; l, m}^{ \pm}$where a clear pattern is recognizable:

Further obstructions to the smoothness of null infinity:

$$
\phi_{j}^{(p)}=\sum_{l=|j-2|}^{p} \sum_{m=-l}^{l} a_{j ; p, l, m}(\tau){ }_{j-2} Y_{l m}
$$

- Even if the regularity condition

$$
\mathscr{C}\left(D_{\gamma_{p}} \cdots D_{\gamma_{1}} C_{\alpha \beta}^{R}\right)(i)=0
$$

is satisfied, there are logarithmic singularities in the coefficients $a_{j ; p, l, m}$ for $p \geq 5$ at the critical sets $I^{ \pm}$.

- Associated with these singularities is a hierarchy of obstructions $\Upsilon_{p ; l, m}^{ \pm}$where a clear pattern is recognizable:
- If $\Upsilon_{p, l, m}^{ \pm}=0$ for given p, l, m then a certain subset of the logarithmic singularities is not present.
- The obstructions are expressible in terms of the initial data.
- For $0 \leq p \leq 4$ the coefficients $a_{j, p ; m, l}$ are polynomials in τ.
- For $p \geq 5$ the coefficients contain -generically- terms of the form:

$$
(1-\tau)^{m_{1}} \ln (1-\tau), \quad(1+\tau)^{m_{2}} \ln (1+\tau)
$$

- In particular, for $p=5$, one has quadrupolar obstructions (harmonics ${ }_{j-2} Y_{2 m}$) of the form:

$$
\Upsilon_{5 ; 2, m}^{+}=\Upsilon_{5 ; 2, m}^{-}=m \times(\text { quadrupole })+(\text { dipole })^{2}+J^{2}
$$

the obstructions are of a time symmetric nature.

Assume that $\Upsilon_{5 ; 2, m}^{ \pm}=0$.

- For $p=6$ the structure of the obstructions is much more involved:

Assume that $\Upsilon_{5 ; 2, m}^{ \pm}=0$.

- For $p=6$ the structure of the obstructions is much more involved:
- Harmonics $Y_{2 m}$:

$$
\Upsilon_{6 ; 2, m}^{+}=(\text {dipole })^{2}+(A+1) J^{2}, \quad \Upsilon_{6 ; 2, m}^{-}=(\text {dipole })^{2}+(A-1) J^{2}
$$

so the obstructions are time asymmetric!!!

Assume that $\Upsilon_{5 ; 2, m}^{ \pm}=0$.

- For $p=6$ the structure of the obstructions is much more involved:
- Harmonics $Y_{2 m}$:

$$
\Upsilon_{6 ; 2, m}^{+}=(\text {dipole })^{2}+(A+1) J^{2}, \quad \Upsilon_{6 ; 2, m}^{-}=(\text {dipole })^{2}+(A-1) J^{2}
$$

so the obstructions are time asymmetric!!!

- Harmonics $Y_{3 m}$:

$$
\Upsilon_{6 ; 3, m}^{+}=\Upsilon_{6 ; 3, m}^{-}=(\text {Octupolar object })
$$

which is time symmetric.

Assume that $\Upsilon_{5 ; 2, m}^{ \pm}=0$.

- For $p=6$ the structure of the obstructions is much more involved:
- Harmonics $Y_{2 m}$:

$$
\Upsilon_{6 ; 2, m}^{+}=(\text {dipole })^{2}+(A+1) J^{2}, \quad \Upsilon_{6 ; 2, m}^{-}=(\text {dipole })^{2}+(A-1) J^{2}
$$

so the obstructions are time asymmetric!!!

- Harmonics $Y_{3 m}$:

$$
\Upsilon_{6 ; 3, m}^{+}=\Upsilon_{6 ; 3, m}^{-}=(\text {Octupolar object })
$$

which is time symmetric.

- And so on...

From formal expansions to solutions

- One of the remaining outstanding hurdles in the analysis is to show existence of the soultions up to the critical sets $I^{ \pm}$, and that the expansions

$$
v_{j} \sim \sum_{p \geq 0} \frac{1}{p!} v_{j}^{(p)}(\tau, \theta, \varphi) \rho^{p}, \quad \phi_{j} \sim \sum_{p \geq 0} \frac{1}{p!} \phi_{j}^{(p)}(\tau, \theta, \varphi) \rho^{p} .
$$

approximate suitably a solution of the conformal field equations.

From formal expansions to solutions

- One of the remaining outstanding hurdles in the analysis is to show existence of the soultions up to the critical sets $I^{ \pm}$, and that the expansions

$$
v_{j} \sim \sum_{p \geq 0} \frac{1}{p!} v_{j}^{(p)}(\tau, \theta, \varphi) \rho^{p}, \quad \phi_{j} \sim \sum_{p \geq 0} \frac{1}{p!} \phi_{j}^{(p)}(\tau, \theta, \varphi) \rho^{p} .
$$

approximate suitably a solution of the conformal field equations.

- In particular one would like to estimate the remainders

$$
\begin{aligned}
& \mathscr{R}_{N}(v)=v-\sum_{p=0}^{N} \frac{1}{p!} v_{j}^{(p)}(\tau, \theta, \varphi) \rho^{p} \\
& \mathscr{R}_{N}(\phi)=\phi-\sum_{p=0}^{N} \frac{1}{p!} \phi_{j}^{(p)}(\tau, \theta, \varphi) \rho^{p}
\end{aligned}
$$

From formal expansions to solutions

- One of the remaining outstanding hurdles in the analysis is to show existence of the soultions up to the critical sets $I^{ \pm}$, and that the expansions

$$
v_{j} \sim \sum_{p \geq 0} \frac{1}{p!} v_{j}^{(p)}(\tau, \theta, \varphi) \rho^{p}, \quad \phi_{j} \sim \sum_{p \geq 0} \frac{1}{p!} \phi_{j}^{(p)}(\tau, \theta, \varphi) \rho^{p} .
$$

approximate suitably a solution of the conformal field equations.

- In particular one would like to estimate the remainders

$$
\begin{aligned}
& \mathscr{R}_{\mathrm{N}}(v)=v-\sum_{p=0}^{N} \frac{1}{p!} v_{j}^{(p)}(\tau, \theta, \varphi) \rho^{p} \\
& \mathscr{R}_{\mathrm{N}}(\phi)=\phi-\sum_{p=0}^{N} \frac{1}{p!} \phi_{j}^{(p)}(\tau, \theta, \varphi) \rho^{p} .
\end{aligned}
$$

- In what follows, we shall assume this can be done.

How does this translate into the NP gauge?

$$
\begin{aligned}
& \widetilde{\Psi}_{0} \sim \psi_{0}^{5} / r^{5}+k_{0} \sum_{m} A_{m} \ln r / r^{5}+\cdots, \\
& \widetilde{\Psi}_{1} \sim \psi_{1}^{4} / r^{4}+\cdots \\
& \widetilde{\Psi}_{2} \sim \psi_{2}^{3} / r^{3}+\cdots \\
& \widetilde{\Psi}_{3} \sim \psi_{3}^{2} / r^{2}+\cdots \\
& \widetilde{\Psi}_{4} \sim \psi_{4}^{1} / r+\cdots
\end{aligned}
$$

for initial data for which

$$
\mathscr{C}\left(D_{\gamma} C_{\alpha \beta}^{R}\right)(i) \neq 0 .
$$

- The spacetime cannot be stationary if $\Upsilon_{5 ; 2, m}^{+} \neq 0$-stationary spacetimes do not contain logarithms in their asymptotic expansions.

An example: Brill-Lindquist data

$$
\begin{aligned}
& \widetilde{h}_{\alpha \beta}=\left(1+\frac{m_{1}}{2\left|\vec{x}-\vec{x}_{1}\right|}+\frac{m_{2}}{2\left|\vec{x}-\vec{x}_{2}\right|}\right)^{4} \delta_{\alpha \beta}, \\
& \tilde{\chi}_{\alpha \beta}=0 .
\end{aligned}
$$

- In this case one finds,

$$
\begin{aligned}
& \widetilde{\Psi}_{0}=\psi_{0}^{5} r^{-5}+\cdots+k_{0} r \ln r / r^{8}+\cdots \\
& \widetilde{\Psi}_{1}=\psi_{1}^{4} r^{-4}+\cdots+k_{1} r \ln r / r^{8}+\cdots \\
& \widetilde{\Psi}_{2}=O\left(r^{-3}\right)
\end{aligned}
$$

where $\Upsilon=m_{1} m_{2}\left|\vec{x}_{1}-\vec{x}_{2}\right|^{2}$.

- Similar behaviour occurs for Bowen-York data!

The behaviour of the asymptotic shear near i^{0}

- Newman \& Penrose ${ }^{\text {a }}$ have shown that if the leading term of the coefficient σ goes to zero as one approaches i^{0} along the null generators of \mathscr{I}^{+}, then there is a canonical way of selecting the Poincaré group out of the BMS group -the asymptotic symmetric group.
- This construction is tied with the possibility of defining in an ambiguous fashion angular momentum at null infinity.

[^2]Proposition 1. The asymptotic shear of peeling spacetimes arising from conformally flat initial data satisfies

$$
\sigma^{0}=O\left(1 / u^{2}\right), \text { as } u \rightarrow-\infty
$$

that is, as one approaches i^{0} along the generators at null infinity.

Proposition 1. The asymptotic shear of peeling spacetimes arising from conformally flat initial data satisfies

$$
\sigma^{0}=O\left(1 / u^{2}\right) \text {, as } u \rightarrow-\infty
$$

that is, as one approaches i^{0} along the generators at null infinity.

- A similar result is expected to hold for nonconformally flat initial data.

Proposition 1. The asymptotic shear of peeling spacetimes arising from conformally flat initial data satisfies

$$
\sigma^{0}=O\left(1 / u^{2}\right), \text { as } u \rightarrow-\infty
$$

that is, as one approaches i^{0} along the generators at null infinity.

- A similar result is expected to hold for nonconformally flat initial data.
- In order to obtain spacetimes for which $\sigma^{0} \nrightarrow 0$ as $u \rightarrow-\infty$, one may have to consider initial data sets with linear momentum -boosted data.

The Newman-Penrose constants

- These are a set of 5 complex absolutely conserved quantities defined on a cut of \mathscr{I}^{+}and \mathscr{I}^{-}:

$$
G_{m}^{+}=\oint_{2} \bar{Y}_{2, m} \psi_{0}^{6} d S, \quad G_{m}^{-}=\oint_{2} Y_{2, m} \psi_{4}^{6} d S
$$

The Newman-Penrose constants

- These are a set of 5 complex absolutely conserved quantities defined on a cut of \mathscr{I}^{+}and \mathscr{I}^{-}:

$$
G_{m}^{+}=\oint_{2} \bar{Y}_{2, m} \psi_{0}^{6} d S, \quad G_{m}^{-}=\oint_{2} Y_{2, m} \psi_{4}^{6} d S
$$

- If

$$
\mathscr{C}\left(D_{\gamma_{2}} D_{\gamma_{1}} C_{\alpha \beta}^{R}\right)(i) \neq 0,
$$

then the spacetime is regular enough so that the constants are well defined.

- The solutions of the transport equations on I can be used to write the NP constants in terms of initial data quantities.

- The solutions of the transport equations on I can be used to write the NP constants in terms of initial data quantities.

Proposition 2. For the class of data under consideration one has that

$$
G_{m}^{+}=G_{m}^{-} .
$$

- The solutions of the transport equations on I can be used to write the NP constants in terms of initial data quantities.

Proposition 2. For the class of data under consideration one has that

$$
G_{m}^{+}=G_{m}^{-} .
$$

- Roughly, one has that

$$
G_{m}=m \times(\text { Quadrupole })+(\text { Dipole })+J^{2}+(\text { Ang. Mom. Quad. })
$$

Back to the obstructions:

- If the initial data is conformally flat (but not necessarily time symmetric), then the vanishing of the obstructions up to $p=7$ imply:

$$
\vartheta=\frac{1}{\rho}+\frac{m}{2}+O\left(\rho^{4}\right), \quad \psi_{\alpha \beta}=\psi_{\alpha \beta}^{A}+O(1)
$$

Back to the obstructions:

- If the initial data is conformally flat (but not necessarily time symmetric), then the vanishing of the obstructions up to $p=7$ imply:

$$
\vartheta=\frac{1}{\rho}+\frac{m}{2}+O\left(\rho^{4}\right), \quad \psi_{\alpha \beta}=\psi_{\alpha \beta}^{A}+O(1)
$$

- The data is Schwarzschildean up to octupolar terms.

Back to the obstructions:

- If the initial data is conformally flat (but not necessarily time symmetric), then the vanishing of the obstructions up to $p=7$ imply:

$$
\vartheta=\frac{1}{\rho}+\frac{m}{2}+O\left(\rho^{4}\right), \quad \psi_{\alpha \beta}=\psi_{\alpha \beta}^{A}+O(1)
$$

- The data is Schwarzschildean up to octupolar terms.
- The only stationary data in the class of conformally flat initial data are the Schwarzschildean ones.
- In general one would expect the following to hold:

Conjecture. If the time development of conformally flat initial data admits a smooth conformal extension at both future and past null infinity, then the initial data is Schwarzschildean in a neighbourhood of infinity.

Some references:

- J. A. Valiente Kroon, A new class of obstructions to the smoothness of null infinity, Comm. Math. Phys. 244, 133 (2004). Also at gr-qc/0211024.
- J. A. Valiente Kroon, Does asymptotic simplicity allow for radiation near spatial infinity?, Commun.Math.Phys. 251, 211 (2004). Also at gr-qc/0309016.
- J. A. Valiente Kroon, Nonexistence of conformally flat slices in the Kerr and other stationary spacetimes, Phys. Rev. Lett. 92, 041101 (2004). Also at gr-qc/0310048.
- J. A. Valiente Kroon, Time asymmetric spacetimes near null and spatial infinity. I. Expansions of developments of conformally flat data. Class.Quantum Grav. 21, 5457-5492 (2004). Also at gr-qc/0408062.
- J. A. Valiente Kroon, Time asymmetric spacetimes near null and spatial infinity. II. Expansions of developments of initial data sets with non-smooth conformal metrics. Class.Quantum Grav. 22, 1683 (2005). Also at gr-qc/0412045.
- J. A Valiente Kroon, On smoothness asymmetric null infinities. Class.Quantum Grav. 23, 3593 (2006). Also at gr-qc/0605056.

[^0]: ${ }^{\text {a }} \mathrm{H}$. Friedrich. Gravitational fields near spacelike and null infinity. J. Geom. Phys. 24, 83-163 (1998).

[^1]: ${ }^{\text {a }}$ S Dain \& H Friedrich, Asymptotically flat initial data with prescribed regularity at infinity Comm. Math. Phys. 222, 569 (2001)

[^2]: ${ }^{\text {a}}$ ET Newman \& R Penrose A note on the BMS group. J. Math. Phys. 7, 863 (1966).

