A view of spacetime near spatial infinity

Juan A. Valiente Kroon, School of Mathematical Sciences, Queen Mary, University of London, United Kingdom.

November 24th, 2006.

The i^0 problem

• There is a lack of general results about the evolution of data near spatial infinity.

• One of the difficulties of the analysis lies in the fact that on an initial hypersurface *S*, the rescaled conformal Weyl tensor behaves like:

$$d^{\mu}_{\ \nu\lambda\rho} = \Omega C^{\mu}_{\ \nu\lambda\rho} = O(r^{-3}) \text{ as } r \to 0.$$

• In order to overcome this difficulty, one has to resolve the structure contained in the point i^0 .

Blow-up of *i*⁰ into the cylinder at spatial infinity^a

The conformal factor is given by:

$$\Omega = f(\rho, \theta, \varphi) \left(1 - \tau^2 \right),$$
$$f(\rho, \theta, \varphi) = \rho + O(\rho^2),$$

where

is given in terms of initial data on *S*.

^aH. Friedrich. *Gravitational fields near spacelike and null infinity*. J. Geom. Phys. **24**, 83-163 (1998).

For suitable classes of initial data $(S, h_{\alpha\beta}, \chi_{\alpha\beta})$ —e.g.

- time symmetric data ($\chi_{\alpha\beta} = 0$) with smooth conformal metric,
- time asymmetric ($\chi_{\alpha\beta} \neq 0$), conformally flat data,
- stationary data, and ...

the standard Cauchy problem can be reformulated as a regular finite initial value problem for the conformal field equations. Features:

- the data and equations are regular on a manifold with boundary;
- spacelike and null infinity have a finite representation with their structure and location known a priori.

About the initial data:

• Construct maximal initial data $(\tilde{h}_{\alpha\beta}, \tilde{\chi}_{\alpha\beta})$ by means of the conformal Ansatz:

$$ilde{h}_{lphaeta} = artheta^4 h_{lphaeta}, \qquad ilde{\chi}_{lphaeta} = artheta^{-2} \psi_{lphaeta},$$

so that the constraint equations reduce to:

$$D^{\alpha}\psi_{\alpha\beta} = 0,$$
$$\left(D^{\alpha}D_{\alpha} - \frac{1}{8}r\right)\vartheta = \frac{1}{8}\psi_{\alpha\beta}\psi^{\alpha\beta}\vartheta^{-7}.$$

• Consider conformally flat initial data:

$$h_{\alpha\beta} = \vartheta^4 \delta_{\alpha\beta}.$$

• To solve the momentum constraint write:

$$\psi_{\alpha\beta} = \psi^A_{\alpha\beta} + \psi^J_{\alpha\beta} + \psi^Q_{\alpha\beta} + \psi^\lambda_{\alpha\beta},$$

where

$$\begin{split} \psi^{A}_{\alpha\beta} &= \frac{A}{|x|^{3}} \left(3n_{\alpha}n_{\beta} - \delta_{\alpha\beta} \right), \\ \psi^{J}_{\alpha\beta} &= \frac{3}{|x|^{3}} \left(n_{\beta}\epsilon_{\gamma\alpha\rho}J^{\rho}n^{\gamma} + n_{\alpha}\epsilon_{\rho\beta\gamma}J^{\gamma}n^{\rho} \right), \\ \psi^{Q}_{\alpha\beta} &= \frac{3}{2|x|^{2}} \left(Q_{\alpha}n_{\beta} + Q_{\beta}n_{\alpha} - (\delta_{\alpha\beta} - n_{\alpha}n_{\beta})Q^{\gamma}n_{\gamma} \right) \\ \psi^{\lambda}_{\alpha\beta} &= \mathcal{O}(1/|x|) \qquad \text{(higher multipoles).} \end{split}$$

- The term $\psi_{\alpha\beta}^{\lambda}$ is calculated out of a smooth complex function λ .
- If

$$\lambda = \lambda^\flat / \rho + \lambda^\natural$$

with λ^{\flat} , λ^{\natural} smooth, then the conformal factor ϑ admits the parametrisation

$$\vartheta = \frac{1}{\rho} + W$$

with W(i) = m/2 and expandible in powers of ρ solely ^a.

^aS Dain & H Friedrich, *Asymptotically flat initial data with prescribed regularity at infinity* Comm. Math. Phys. **222**, 569 (2001) For later use, we define the tensor

where $\chi^{R}_{\alpha\beta} = \theta^{-4} \psi^{R}_{\alpha\beta}$ is the part of the second fundamental form arising from the real part of λ .

For later use, we define the tensor

$$C^{R}_{\alpha\beta} = D_{\gamma} \chi^{R}_{\delta(\alpha} \epsilon^{\gamma\delta}{}_{\beta)},$$

where $\chi^{R}_{\alpha\beta} = \theta^{-4} \psi^{R}_{\alpha\beta}$ is the part of the second fundamental form arising from the real part of λ .

• $C^{R}_{\alpha\beta}$ can be thought of as the magnetic part of the Weyl tensor arising from Re(λ).

The conformal propagation equations near spatial infinity:

• The unknowns are given by the components of the frame, connection, and Ricci tensor

 $v = (c_{AB}^{\mu}, \Gamma_{ABCD}, \Phi_{ABCD}),$

and the components of the Weyl spinor

 $\phi = (\phi_0, \phi_1, \phi_2, \phi_3, \phi_4).$

• The evolution equations are given by:

 $\partial_{\tau} v = Kv + Q(v, v) + L\phi,$ $A^{0} \partial_{\tau} \phi + A^{\alpha} \partial_{\alpha} \phi = B(\Gamma_{ABCD})\phi,$

• The matrix associated to the ∂_{τ} term in the Bianchi propagation equations is given by:

$$A^0 = \sqrt{2} \operatorname{diag}(1 - \tau, 1, 1, 1, 1 + \tau).$$

- Thus, the equations degenerate at the sets where null infinity touches spatial infinity:

$$I^{\pm} = \{ \rho = 0, \tau = \pm 1 \}$$

- Standard methods of symmetric hyperbolic systems cannot be used to analyse the equations near I^{\pm} .

Transport equations on I

- The procedure by which *i*⁰ is replaced by *I* leads to an unfolding of the evolution process near spatial infinity which permits an analysis to arbitrary order and in all detail.
- Consistent with our choice of initial data assume that the field quantities admit the following *Taylor like expansions:*

$$v_j \sim \sum_{p \ge 0} \frac{1}{p!} v_j^{(p)}(\tau, \theta, \varphi) \rho^p, \qquad \phi_j \sim \sum_{p \ge 0} \frac{1}{p!} \phi_j^{(p)}(\tau, \theta, \varphi) \rho^p.$$

Transport equations on I

- The procedure by which *i*⁰ is replaced by *I* leads to an unfolding of the evolution process near spatial infinity which permits an analysis to arbitrary order and in all detail.
- Consistent with our choice of initial data assume that the field quantities admit the following *Taylor like expansions:*

$$v_j \sim \sum_{p \ge 0} \frac{1}{p!} v_j^{(p)}(\tau, \theta, \varphi) \rho^p, \qquad \phi_j \sim \sum_{p \ge 0} \frac{1}{p!} \phi_j^{(p)}(\tau, \theta, \varphi) \rho^p.$$

- In order to determine the coefficients $v_j^{(p)}$ and $\phi_j^{(p)}$ exploit the fact that the cylinder *I* is a total characteristic of the propagation equations:
 - The equations reduce to an interior system on *I*.

• Exploiting the total characteristic one can obtain a hierarchy of interior equations for the coefficients in the expansions:

$$\partial_{\tau} v^{(p)} = K v^{(p)} + Q(v^{(0)}, v^{(p)}) + Q(v^{(p)}, v^{(0)}) + \sum_{j=1}^{p-1} \left(Q(v^{(j)}, v^{(p-j)}) + L^{(j)} \phi^{(p-j)} \right) + L^{(p)} \phi^{(0)},$$

$$A^{0,(0)} \partial_{\tau} \phi^{(p)} + A^{C,(p)} \partial_{C} \phi^{(p)} = B(\Gamma^{(0)}_{ABCD}) \phi^{(p)} + \sum_{j=1}^{p} \binom{p}{j} \left(B(\Gamma^{(j)}_{ABCD}) \phi^{(p-j)} - A^{\mu,(j)} \partial_{\mu} \phi^{(p-j)} \right),$$

which can be solved recursively —the equations are linear and decoupled.

- $v_j^{(p)}$ and $\phi_j^{(p)}$ are completely determined by the expansions of the initial data on S near spatial infinity.
- Thus, one can relate properties of the initial data with the asymptotic behaviour of the spacetime near null and spatial infinities.

Obstructions to the smoothness of null infinity:

Due to the degeneracy of the Bianchi propagation equations at the critical sets I^{\pm} , any hint of non-smoothness is bound to arise first in the coefficients $\phi^{(p)}$.

Obstructions to the smoothness of null infinity:

Due to the degeneracy of the Bianchi propagation equations at the critical sets I^{\pm} , any hint of non-smoothness is bound to arise first in the coefficients $\phi^{(p)}$.

• Decompose $\phi^{(p)}$ in spherical harmonics:

$$\phi_j^{(p)} = \sum_{l=|j-2|}^p \sum_{m=-l}^l a_{j;p,l,m}(\tau) \,_{j-2} Y_{lm}$$

Obstructions to the smoothness of null infinity:

Due to the degeneracy of the Bianchi propagation equations at the critical sets I^{\pm} , any hint of non-smoothness is bound to arise first in the coefficients $\phi^{(p)}$.

• Decompose $\phi^{(p)}$ in spherical harmonics:

$$\phi_{j}^{(p)} = \sum_{l=|j-2|}^{p} \sum_{m=-l}^{l} a_{j;p,l,m}(\tau) \,_{j-2} Y_{lm}$$

• A first analysis of the equations at the level of the linearised Bianchi equations —spin 2 zero-rest-mass field— reveals that the coefficients

$$a_{j;p,p,m}(\tau) \longleftrightarrow_{j-2} Y_{pm}, \qquad m = -p, \dots, p$$

develop a certain type of logarithmic singularities at $\tau = \pm 1$.

• More precisely,

$$a_{j;p,p,m}(\tau) = A_p (1-\tau)^{p-2+j} (1+\tau)^{p+2-j} \ln(1-\tau) + B_p (1-\tau)^{p-2+j} (1+\tau)^{p+2-j} \ln(1+\tau) + (\text{polynom in } \tau)$$

for p = 2, 3, ...

-
$$A_p$$
 and B_p depend on $\operatorname{Re}(\lambda)$ only.

• More precisely,

$$a_{j;p,p,m}(\tau) = A_p (1-\tau)^{p-2+j} (1+\tau)^{p+2-j} \ln(1-\tau) + B_p (1-\tau)^{p-2+j} (1+\tau)^{p+2-j} \ln(1+\tau) + (\text{polynom in } \tau)$$

for p = 2, 3, ...

- A_p and B_p depend on $\operatorname{Re}(\lambda)$ only.
- These singularities can be precluded by imposing a certain regularity condition at the initial hypersurface:

$$\mathscr{C}(D_{\gamma_p}\cdots D_{\gamma_1}C^R_{\alpha\beta})(i)=0,$$

for p = 0, ..., 5, where \mathscr{C} denotes the symmetric tracefree part.

Further obstructions to the smoothness of null infinity:

$$\phi_j^{(p)} = \sum_{l=|j-2|}^p \sum_{m=-l}^l a_{j;p,l,m}(\tau) \,_{j-2} Y_{lm}$$

• Even if the regularity condition

$$\mathscr{C}(D_{\gamma_p}\cdots D_{\gamma_1}C^R_{\alpha\beta})(i)=0,$$

is satisfied, there are logarithmic singularities in the coefficients $a_{j;p,l,m}$ for $p \ge 5$ at the critical sets I^{\pm} .

Further obstructions to the smoothness of null infinity:

$$\phi_j^{(p)} = \sum_{l=|j-2|}^p \sum_{m=-l}^l a_{j;p,l,m}(\tau) \,_{j-2} Y_{lm}$$

• Even if the regularity condition

$$\mathscr{C}(D_{\gamma_p}\cdots D_{\gamma_1}C^R_{\alpha\beta})(i)=0,$$

is satisfied, there are logarithmic singularities in the coefficients $a_{j;p,l,m}$ for $p \ge 5$ at the critical sets I^{\pm} .

• Associated with these singularities is a hierarchy of obstructions $\Upsilon^{\pm}_{p;l,m}$ where a clear pattern is recognizable:

Further obstructions to the smoothness of null infinity:

$$\phi_j^{(p)} = \sum_{l=|j-2|}^p \sum_{m=-l}^l a_{j;p,l,m}(\tau) \,_{j-2} Y_{lm}$$

• Even if the regularity condition

$$\mathscr{C}(D_{\gamma_p}\cdots D_{\gamma_1}C^R_{\alpha\beta})(i)=0,$$

is satisfied, there are logarithmic singularities in the coefficients $a_{j;p,l,m}$ for $p \ge 5$ at the critical sets I^{\pm} .

- Associated with these singularities is a hierarchy of obstructions $\Upsilon^{\pm}_{p;l,m}$ where a clear pattern is recognizable:
 - If $\Upsilon_{p,l,m}^{\pm} = 0$ for given p, l, m then a certain subset of the logarithmic singularities is not present.
 - The obstructions are expressible in terms of the initial data.

- For $0 \le p \le 4$ the coefficients $a_{j,p;m,l}$ are polynomials in τ .
- For *p* ≥ 5 the coefficients contain —generically— terms of the form:

$$(1-\tau)^{m_1}\ln(1-\tau), \quad (1+\tau)^{m_2}\ln(1+\tau).$$

– In particular, for p = 5, one has quadrupolar obstructions (harmonics $_{j-2}Y_{2m}$) of the form:

 $\Upsilon_{5;2,m}^+ = \Upsilon_{5;2,m}^- = m \times (\text{quadrupole}) + (\text{dipole})^2 + J^2,$

the obstructions are of a time symmetric nature.

• For *p* = 6 the structure of the obstructions is much more involved:

- For *p* = 6 the structure of the obstructions is much more involved:
 - Harmonics Y_{2m} :

 $\Upsilon_{6;2,m}^+ = (\text{dipole})^2 + (A+1)J^2, \qquad \Upsilon_{6;2,m}^- = (\text{dipole})^2 + (A-1)J^2,$

so the obstructions are time asymmetric!!!

- For *p* = 6 the structure of the obstructions is much more involved:
 - Harmonics Y_{2m} :

 $\Upsilon_{6;2,m}^+ = (\text{dipole})^2 + (A+1)J^2, \qquad \Upsilon_{6;2,m}^- = (\text{dipole})^2 + (A-1)J^2,$

so the obstructions are time asymmetric!!!

– Harmonics Y_{3m} :

$$\Upsilon^+_{6;3,m} = \Upsilon^-_{6;3,m} = (\text{Octupolar object}),$$

which is time symmetric.

- For *p* = 6 the structure of the obstructions is much more involved:
 - Harmonics Y_{2m} :

 $\Upsilon_{6;2,m}^+ = (\text{dipole})^2 + (A+1)J^2, \qquad \Upsilon_{6;2,m}^- = (\text{dipole})^2 + (A-1)J^2,$

so the obstructions are time asymmetric!!!

– Harmonics Y_{3m} :

$$\Upsilon^+_{6;3,m} = \Upsilon^-_{6;3,m} = (\text{Octupolar object}),$$

which is time symmetric.

• And so on...

From formal expansions to solutions

 One of the remaining outstanding hurdles in the analysis is to show existence of the soultions up to the critical sets *I*[±], and that the expansions

$$v_j \sim \sum_{p \ge 0} \frac{1}{p!} v_j^{(p)}(\tau, \theta, \varphi) \rho^p, \qquad \phi_j \sim \sum_{p \ge 0} \frac{1}{p!} \phi_j^{(p)}(\tau, \theta, \varphi) \rho^p.$$

approximate suitably a solution of the conformal field equations.

From formal expansions to solutions

 One of the remaining outstanding hurdles in the analysis is to show existence of the soultions up to the critical sets I[±], and that the expansions

$$v_j \sim \sum_{p \ge 0} \frac{1}{p!} v_j^{(p)}(\tau, \theta, \varphi) \rho^p, \qquad \phi_j \sim \sum_{p \ge 0} \frac{1}{p!} \phi_j^{(p)}(\tau, \theta, \varphi) \rho^p.$$

approximate suitably a solution of the conformal field equations.

• In particular one would like to estimate the remainders

$$\mathscr{R}_N(v) = v - \sum_{p=0}^N \frac{1}{p!} v_j^{(p)}(\tau, \theta, \varphi) \rho^p,$$

 $\mathscr{R}_N(\phi) = \phi - \sum_{p=0}^N \frac{1}{p!} \phi_j^{(p)}(\tau, \theta, \varphi) \rho^p.$

From formal expansions to solutions

 One of the remaining outstanding hurdles in the analysis is to show existence of the soultions up to the critical sets I[±], and that the expansions

$$v_j \sim \sum_{p \ge 0} \frac{1}{p!} v_j^{(p)}(\tau, \theta, \varphi) \rho^p, \qquad \phi_j \sim \sum_{p \ge 0} \frac{1}{p!} \phi_j^{(p)}(\tau, \theta, \varphi) \rho^p.$$

approximate suitably a solution of the conformal field equations.

• In particular one would like to estimate the remainders

$$\mathscr{R}_N(v) = v - \sum_{p=0}^N \frac{1}{p!} v_j^{(p)}(\tau, \theta, \varphi) \rho^p,$$

 $\mathscr{R}_N(\phi) = \phi - \sum_{p=0}^N \frac{1}{p!} \phi_j^{(p)}(\tau, \theta, \varphi) \rho^p.$

• In what follows, we shall assume this can be done.

How does this translate into the NP gauge?

$$\begin{split} \widetilde{\Psi}_0 &\sim \psi_0^5/r^5 + k_0 \sum_m A_m \ln r/r^5 + \cdots, \\ \widetilde{\Psi}_1 &\sim \psi_1^4/r^4 + \cdots, \\ \widetilde{\Psi}_2 &\sim \psi_2^3/r^3 + \cdots, \\ \widetilde{\Psi}_3 &\sim \psi_3^2/r^2 + \cdots, \\ \widetilde{\Psi}_4 &\sim \psi_4^1/r + \cdots. \end{split}$$

for initial data for which

 $\mathscr{C}(D_{\gamma}C^{R}_{\alpha\beta})(i)\neq 0.$

• The spacetime cannot be *stationary* if $\Upsilon_{5;2,m}^+ \neq 0$ —stationary spacetimes do not contain logarithms in their asymptotic expansions.

An example: Brill-Lindquist data

$$\widetilde{h}_{\alpha\beta} = \left(1 + \frac{m_1}{2|\vec{x} - \vec{x}_1|} + \frac{m_2}{2|\vec{x} - \vec{x}_2|}\right)^4 \delta_{\alpha\beta},$$

$$\widetilde{\chi}_{\alpha\beta} = 0.$$

• In this case one finds,

$$\widetilde{\Psi}_{0} = \psi_{0}^{5} r^{-5} + \dots + k_{0} \Upsilon \ln r / r^{8} + \dots$$

$$\widetilde{\Psi}_{1} = \psi_{1}^{4} r^{-4} + \dots + k_{1} \Upsilon \ln r / r^{8} + \dots$$

$$\widetilde{\Psi}_{2} = \mathcal{O}(r^{-3})$$

$$\vdots$$

where $\Upsilon = m_1 m_2 |\vec{x}_1 - \vec{x}_2|^2$.

• Similar behaviour occurs for Bowen-York data!

The behaviour of the asymptotic shear near i^0

- Newman & Penrose ^a have shown that if the leading term of the coefficient σ goes to zero as one approaches i⁰ along the null generators of *I*⁺, then there is a canonical way of selecting the Poincaré group out of the BMS group —the asymptotic symmetric group.
- This construction is tied with the possibility of defining in an ambiguous fashion angular momentum at null infinity.

^aET Newman & R Penrose *A note on the BMS group*. J. Math. Phys. **7**, 863 (1966).

Proposition 1. The asymptotic shear of peeling spacetimes arising from conformally flat initial data satisfies

$$\sigma^0 = O(1/u^2), \text{ as } u \to -\infty$$

that is, as one approaches i^0 along the generators at null infinity.

Proposition 1. The asymptotic shear of peeling spacetimes arising from conformally flat initial data satisfies

 $\sigma^0 = O(1/u^2), as u \to -\infty$

that is, as one approaches i^0 along the generators at null infinity.

• A similar result is expected to hold for nonconformally flat initial data.

Proposition 1. *The asymptotic shear of peeling spacetimes arising from conformally flat initial data satisfies*

 $\sigma^0 = O(1/u^2), as u \to -\infty$

that is, as one approaches i^0 along the generators at null infinity.

- A similar result is expected to hold for nonconformally flat initial data.
- In order to obtain spacetimes for which σ⁰ → 0 as u → -∞, one may have to consider initial data sets with linear momentum *—boosted data*.

The Newman-Penrose constants

• These are a set of 5 complex absolutely conserved quantities defined on a cut of *I*⁺ and *I*⁻:

$$G_m^+ = \oint {}_2 \bar{Y}_{2,m} \psi_0^6 dS, \quad G_m^- = \oint {}_2 Y_{2,m} \psi_4^6 dS.$$

The Newman-Penrose constants

• These are a set of 5 complex absolutely conserved quantities defined on a cut of \mathscr{I}^+ and \mathscr{I}^- :

$$G_m^+ = \oint {}_2 \bar{Y}_{2,m} \psi_0^6 dS, \quad G_m^- = \oint {}_2 Y_{2,m} \psi_4^6 dS.$$

• If

$\mathscr{C}(D_{\gamma_2}D_{\gamma_1}C^R_{\alpha\beta})(i)\neq 0,$

then the spacetime is regular enough so that the constants are well defined.

• The solutions of the transport equations on *I* can be used to write the NP constants in terms of initial data quantities.

• The solutions of the transport equations on *I* can be used to write the NP constants in terms of initial data quantities.

Proposition 2. For the class of data under consideration one has that

 $G_m^+ = G_m^-.$

• The solutions of the transport equations on *I* can be used to write the NP constants in terms of initial data quantities.

Proposition 2. For the class of data under consideration one has that

$$G_m^+ = G_m^-.$$

• Roughly, one has that

 $G_m = m \times (\text{Quadrupole}) + (\text{Dipole}) + J^2 + (\text{Ang. Mom. Quad.})$

Back to the obstructions:

• If the initial data is conformally flat (but not necessarily time symmetric), then the vanishing of the obstructions up to p = 7 imply:

$$\vartheta = \frac{1}{\rho} + \frac{m}{2} + O(\rho^4), \qquad \psi_{\alpha\beta} = \psi^A_{\alpha\beta} + O(1).$$

Back to the obstructions:

• If the initial data is conformally flat (but not necessarily time symmetric), then the vanishing of the obstructions up to p = 7 imply:

$$\vartheta = rac{1}{
ho} + rac{m}{2} + O(
ho^4), \qquad \psi_{\alpha\beta} = \psi^A_{\alpha\beta} + O(1).$$

- The data is Schwarzschildean up to octupolar terms.

Back to the obstructions:

• If the initial data is conformally flat (but not necessarily time symmetric), then the vanishing of the obstructions up to p = 7 imply:

$$\vartheta = \frac{1}{\rho} + \frac{m}{2} + O(\rho^4), \qquad \psi_{\alpha\beta} = \psi^A_{\alpha\beta} + O(1).$$

- The data is Schwarzschildean up to octupolar terms.
- The only stationary data in the class of conformally flat initial data are the Schwarzschildean ones.

• In general one would expect the following to hold:

Conjecture. If the time development of conformally flat initial data admits a smooth conformal extension at both future and past null infinity, then the initial data is Schwarzschildean in a neighbourhood of infinity.

Some references:

- J. A. Valiente Kroon, *A new class of obstructions to the smoothness of null infinity*, Comm. Math. Phys. **244**, 133 (2004). Also at gr-qc/0211024.
- J. A. Valiente Kroon, *Does asymptotic simplicity allow for radiation near spatial infinity?*, Commun.Math.Phys. **251**, 211 (2004). Also at gr-qc/0309016.
- J. A. Valiente Kroon, *Nonexistence of conformally flat slices in the Kerr and other stationary spacetimes*, Phys. Rev. Lett. **92**, 041101 (2004). Also at gr-qc/0310048.
- J. A. Valiente Kroon, *Time asymmetric spacetimes near null and spatial infinity*. I. *Expansions of developments of conformally flat data*. Class.Quantum Grav. **21**, 5457-5492 (2004). Also at gr-qc/0408062.
- J. A. Valiente Kroon, *Time asymmetric spacetimes near null and spatial infinity. II. Expansions of developments of initial data sets with non-smooth conformal metrics.* Class.Quantum Grav. **22**, 1683 (2005). Also at gr-qc/0412045.
- J. A Valiente Kroon, *On smoothness asymmetric null infinities*. Class.Quantum Grav. **23**, 3593 (2006). Also at gr-qc/0605056.