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Overview

• Multiple blocks

• Numerical stability

• High order methods

• Efficiency and accuracy

• 3D simulations:

– Scalar perturbations of a Kerr black hole

– Formulation of the Einstein equations

– Solving the constraints with finite elements.

– Wave extraction techniques

– Weak gravitational waves

– Distorted black holes



Multiple blocks

In the same way in differential geometry one covers 

the manifold with several patches, here we cover 

the computational domain with several blocks 

(non-overlapping patches)



Multiple blocks 

• Advantages:

1) We can handle non-trivial topologies

2) Smooth (inner and outer boundaries)

3) One keeps the angular resolution fixed. 

4) With grid generation software, one can handle “arbitrary” complicated 
geometries. 

• Some applications:

1) Closed cosmologies

2) Well defined black hole excision and outer boundary conditions. No 
need to extend the eqs beyond null infinity if one compactifies the 
spacetime 

3) Moving the boundaries far away becomes an order N problem (as 
opposed to N^3 with cartesian coordinates)



Numerical stability 

For symmetric hyperbolic systems with maximally dissipative 

boundary conditions, one can show well posedness of the 

associated initial-boundary value problem through the energy 

method

An energy estimate is derived, using that the system is symmetric 

and integrating by parts. 

Numerical stability is the discrete version of well posedness. 

Numerical schemes can be built so that these two concepts go 

hand by hand.

Linearly stable symmetric schemes can be constructed by using 

difference operators satisfying the discrete version of integration by 

parts: Summation By Parts (SBP)

In the case of multiple blocks, the different domains are 

communicated through penalty terms which do not spoil the energy 

estimate. 



Numerical stability

The difference operators do not depend on the equation one solves (they 
need to be derived only once)

In the interior D is a standard centered difference operator of order 2n

If the scalar product is diagonal (no-diagonal), the order at and close to 
boundaries is n (2n-1)

We denote them by the order in the interior followed by the order at and close 
to boundaries. 

For example: 2-1, 4-2, 4-3, 6-3, 6-5, 8-4, 10-5 (the red ones are not unique)

We can make use of this non-uniqueness to optimize them.

u,Dv v,Du uv |a
b

For some scalar product u,v h uiv j ij

i, j 1

n

A difference operator D is said to satisfy SBP if



High order methods

• Einstein’s equations can be written as a system of first order 

symmetric hyperbolic equations which are not genuinely non-linear.

• As a result, the solutions are expected to be smooth (no shocks). 

• High order and spectral methods are ideal for systems with smooth 

solutions. 

• They are especially useful in long term evolutions, low order schemes 

tend to have  large phase errors. 



Efficiency and accuracy 

• Efficiency: By construction the principal part of the semidiscrete 

equations has purely imaginary eigenvalues. The largest one 

determines the maximum timestep allowed (CFL limit). 

• Accuracy: For a given order, the operators coincide in the 

interior and are different near (inter-block) boundaries. 

• By exploiting this non-uniqueness we minimize an average of 

the spectral radius and the boundary trucation error. We can 

minimize the latter by around two orders of magnitude and keep 

the spectral radius comparable to that one of a  low order 

scheme. 



Efficiency and accuracy



Efficiency and accuracy 

We can gain around six orders of magnitude

in accuracy compared to low order methods, 

without the sacrifice of a very small timestep. 



Scalar perturbations of Kerr black holes 

We studied the relative 

of different quasinormal 

modes and dependence on 

the initial data, searching for 

initial data which maximally 

excites the co- and counter-

rotating fundamental modes

m=2 : =2.45

m=-2 : =3.43

Overtones become 

significantly excited (only) for 

large spins (>0.9)

The relative mode excitation of quasinormal modes in ringdown signals 

is of special interest to LISA as a test of the no hair conjecture.

Knowledge of the which modes are more likely to get excited would allow to 

decrease the number of templates needed for matched filtering



Scalar perturbations of Kerr black holes: tail decay



Quasinormal frequencies extracted from the numerical 

waves.
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Formulation of the Einstein equations

• We have two first order 
symmetric hyperbolic 
reductions of Einstein’s 
equations

• An Einstein-Christoffel like 
with Bona-Masso slicing 
conditions and constraint 
preserving boundary 
conditions 

• An harmonic formulation of 
the equations with constraint 
damping and maximally 
dissipative boundary 
conditions (so far)



Solving the constraints with FeTk( Finite elements 

ToolKit)

Features of FEtk

Unstructured symplectic 
meshes 

Adaptive 1st order finite 
elements

Multigrid solver

Parallelization

Arbitrary topologies

Weak formulation of the GR 
constraints

FEtk and Multipatch

Multiblock conformal 
meshes

No interpolation required to 
port FeTk solutions

Adaptivity allows to achieve 
higher accuracy



Brill wave solutions with 

FeTk



Gravitational wave extraction

• We extract gravitational waves from our numerical spacetime using 

two different methods: constructing Psi4 and using Regge-Wheeler-

Zerilli perturbation theory. 

• For this we need to expand Psi4 in spin-weighted spherical harmonics 

and the metric and the metric in spherical tensorial harmonics. 

• In our multi-block grids we always enclose an outer spherical shell, 

which allows us to compute the integrals needed for these 

decompositions without the need of interpolation (faster and more 

accurate). 

• We use high order numerical integration over these spheres (same 

order as evolution scheme itself). 



3D weak gravitational waves 

Odd parity perturbations of flat spacetime 

(sort of Teukolsky waves). The Regge-

Wheeler equation in this case can be 

exactly solved and the numerical solution 

can be compared to the exact (linear) 

one. 



3D distorted black holes 

• Odd parity distortions of a 3D Schwarzschild black hole. 

• At the linear level, the problem can be solved using a generalized 

gauge invariant perturbation formalism (resulting in 1+1 equations 

which can be solved with very high resolution)



3D distorted black holes 


