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Hawking Energy
• Interesting problem: 

determine amount of 
energy contained in the 
simulated domain

• People usually calculate 
the ADM mass or related 
quantities:

- ADM mass at finite 
distance

- as volume integral

- assuming conformal 
flatness outside 
domain

- approximate Bartnik 
mass?

• Question: Why don’t 
people calculate the 
Hawking energy?



Hawking Energy

Unfortunately, this equation is
numerically not well-posed.

Simple definition:

Good definition:

EH =
R

2

(
1−

∫
Θ(!)Θ(n)

)

EH =
R

2

∫ (
σλ + σ̄λ̄−Ψ2 − Ψ̄2 + 2Φ11 + 2Λ

)

[LRR 2004 4]



Hawking Energy

Asymptotic behaviour
(large r):

With numerical error:

EH =
R

2

(
1−

∫
Θ(!)Θ(n)

)

∫
Θ(!)Θ(n) ∼ 1− 1

r

EH ∼ r

(
1−

[
1− 1

r

])

∫
Θ(!)Θ(n) ∼ 1− 1

r
+ O(ε)

ĒH ∼ r

(
1−

[
1− 1

r
+ O(ε)

])

ĒH ∼ EH + O(rε)



Noise through 
Derivatives

• Numerical simulations 
contain noise.  
Derivatives amplify noise.

• Formally,              loses n 
orders of accuracy

• Empirically, higher than 
second derivatives are 
difficult (... with current 
methods)

• In 3+1 D, resolution is 
always a problem
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Noise through 
Derivatives

• Goal: Define angular 
momentum on non-
axisymmetric horizons

• Requires: Find a 
generalisation of a Killing 
vector field on a horizon

• Idea (Ashtekar?): Use 
isocontour lines of a 2-
scalar on the horizon

• Problem: This would 
require at least n=4 
derivatives

• Which would therefore 
not work in spacetimes 
with matter



From DH To IH
• Intuitively, a dynamical 

horizon will become 
“more and more null” at 
late times, becoming 
isolated “at late times”.

• Mathematically, this 
transition from spacelike 
to null is not smooth, and 
does not happen.

• Numerically, the horizon 
will be indistinguishable 
from a null surface at 
some time, and the 
transition must be 
handled.
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highly dynamical. This situation is formalized by the
notion of an isolated horizon [11, 12, 13, 14, 15]. Us-
ing isolated horizons, it has been possible to derive the
laws of black hole mechanics, use it as a basis for the
quantum black hole entropy calculations and find unex-
pected properties of hairy black holes in Einstein-Yang-
Mills theory; see [19] and references therein. Most im-
portantly for our purposes, isolated horizons have also
proved to be useful in numerical relativity. For exam-
ple, isolated horizons provide a coordinate invariant
method of calculating the angular momentum andmass
of a black hole [35]. They can be used to obtain bound-
ary conditions for constructing quasi-equilibrium initial
data sets [36, 37, 38, 39]. Theymight have a role in wave-
form extraction [15]. A pedagogical review of isolated
horizons from the numerical relativity perspective can
be found in [21].
In this paper, we are more interested in the dynamical

regime when the MTT is not null. A spacelike MTT con-
sisting of future-marginally trapped surfaces is called
a Dynamical Horizon (DH). Thus, a dynamical horizon
is a spacelike 3-surface equipped with a given foliation
by FMOTSs. The properties of a dynamical horizon are
studied in detail in [9, 10, 40]. The casewhen the horizon
is very close to being isolated but still evolving dynam-
ically has been studied in [41, 42] and its Hamiltonian
treatment is considered in [43]. Note that the local ex-
istence of DHs follows from the local existence of MTTs
because if Θ(n) < 0 at any given time, it will continue
to be strictly negative for at least a short duration. We
elaborate on the spacelike property below.
A timelike MTT will be called a timelike membrane

(TLM). A TLM cannot be considered to represent the
surface of a black hole since a time-like surface is not
a one-way membrane, and both ingoing and outgoing
causal curves can pass through it. In some instances, we
shall use the term “horizon” loosely to refer to a generic
marginal surface or a MTT without any further quali-
fiers. The exact meaning should hopefully be clear from
the context.
An explicit example of a dynamical horizon is pro-

vided by the Vaidya spacetime which describes the
gravitational collapse of null dust [44, 45, 46]. (See
also [47] for further examples in spherically symmetry).
More generally, figure 1 depicts a dynamical horizon H
bounded by two MOTSs S1 and S2. S is a typical mem-
ber of the foliation. The vector τ̂a is the future directed
unit timelike normal to H, r̂a is tangent to H and is
the unit outward pointing spacelike normal to the cross-
sections. A fiducial set of null normals is

!a =
1√
2
(τ̂a + r̂a) , na =

1√
2
(τ̂a − r̂a) . (2.7)

As before, Θ(!) = 0 and Θ(n) < 0. The area of a cross-
section S will be denoted by AS and its radius by RS :=√
AS/4π. A radial coordinate on H will be denoted by

r; the cross sections of H are the constant r surfaces. The
3-metric and extrinsic curvature of H will be denoted

τ̂a

S1

S2

nar̂a

!a H

S

Ta

RaΣ

FIG. 1: A dynamical horizon H bounded by MOTSs S1 and S2.
!a is the outgoing null normal, na is the ingoing null normal, r̂a

is the unit spacelike normal to the cross-sections, and τ̂a is the
unit timelike normal to H. Σ is a Cauchy surface intersecting
H in a 2-sphere S. Ta is the unit timelike normal to Σ and Ra
is the unit space-like outward pointing vector normal to S and
tangent to Σ.

respectively by qab and Kab, and q̃ab is the 2-metric on S.

Figure 1 shows also a Cauchy surface Σ intersecting
a dynamical horizon H. This intersection S will always
be assumed to be one of the given cross-sections of H.
The unit timelike normal to the horizon is Ta and the
unit outward pointing spacelike normal to S within Σ
is Ra. The three metric and extrinsic curvature of Σ are
denoted by q̄ab and K̄ab respectively. The fiducial set of
null normals to S arising naturally from Σ are

!̄a =
1√
2
(Ta + Ra) , n̄a =

1√
2
(Ta − Ra) . (2.8)

A boost transformation of the form of equation (2.2) con-
nects (!a, na) and (!̄a, n̄a):

!a = f !̄a , na = f−1n̄a . (2.9)

When the horizon settles down and becomes null, an
infinite boost ( f → ∞) is required to go from (!̄a, n̄a) to
(!a, na).
We conclude this sub-section with a short summary of

some basic properties of a dynamical horizon:

Topology: The cross-sections of a DH can be either
spherical or toroidal [9, 10, 16, 34]. Toroidal topol-
ogy is possible only in exceptional cases when
σ(!)ab, the scalar curvature R̃ of S, L!Θ(!), Rab!

b,
and ζa (defined in section III) all vanish on S [10].
We shall therefore always take the cross-sections to
be spherical. There are no similar results for cross-
sections of TLMs. However, we use an apparent
horizon tracker which can only locate spherical
AHs [48] and therefore all observed MOTSs have
spherical topology.

Second Law: The area of the cross-sections of a DH in-
creases along r̂a [9, 10]. Thus, if we choose a time
evolution vector field ta for which t · r̂ > 0, then
the area of the dynamical horizon will increase
in time, and this result can be called the second

[PRD 74 024028]
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Figure 1 shows also a Cauchy surface Σ intersecting
a dynamical horizon H. This intersection S will always
be assumed to be one of the given cross-sections of H.
The unit timelike normal to the horizon is Ta and the
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nects (!a, na) and (!̄a, n̄a):

!a = f !̄a , na = f−1n̄a . (2.9)

When the horizon settles down and becomes null, an
infinite boost ( f → ∞) is required to go from (!̄a, n̄a) to
(!a, na).
We conclude this sub-section with a short summary of

some basic properties of a dynamical horizon:

Topology: The cross-sections of a DH can be either
spherical or toroidal [9, 10, 16, 34]. Toroidal topol-
ogy is possible only in exceptional cases when
σ(!)ab, the scalar curvature R̃ of S, L!Θ(!), Rab!

b,
and ζa (defined in section III) all vanish on S [10].
We shall therefore always take the cross-sections to
be spherical. There are no similar results for cross-
sections of TLMs. However, we use an apparent
horizon tracker which can only locate spherical
AHs [48] and therefore all observed MOTSs have
spherical topology.

Second Law: The area of the cross-sections of a DH in-
creases along r̂a [9, 10]. Thus, if we choose a time
evolution vector field ta for which t · r̂ > 0, then
the area of the dynamical horizon will increase
in time, and this result can be called the second

! = T + R n = T −R

!̂ = τ̂ + r̂ n̂ = τ̂ − r̂

! = α!̂ n = n̂/α

Relation between normals:



Coordinates
• In numerical work, 

everything is expressed in 
terms of coordinates 
(basis, gauge):

- domain (grid points)

- tensors (components)

• Coordinate systems can 
have singularities; handling 
multiple maps requires 
much additional work

• Transformations between 
domains (e.g. from a 3D 
hypersurface to a 2D 
surface) require 
interpolation, which is 
inaccurate

Finding apparent horizons and other 2-surfaces of constant expansion 4723
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Figure 2. (a) North pole of the grid on the sphere, in a polar projection. This shows the grid lines
as they lie on the sphere. (b) North pole of the grid on the sphere, as seen from the grid. The solid
and open circles have multiple images on the coordinate grid, separated by π in the φ-direction.

a way to interpolate these quantities onto the surface. These quantities are often discretized
on a Cartesian grid. It is also possible to use spherical coordinates, or to use mesh refinement,
without influencing the way in which the apparent horizon function H is evaluated.

I choose to discretize the two-dimensional quantities, i.e. those quantities living on the
surface, by using a polar θ–φ-grid with constant grid spacings dθ and dφ. A constant grid
spacing works well when the surface has a shape that is not too far from a sphere. Experiments
show that distorted (peanut-shaped) horizons still work well, but usually require a higher
resolution.

Polar coordinates create coordinate singularities at θ = 0 and θ = π , which I avoid by
having the grid points staggered with respect to the poles. The boundary condition in the
φ-direction is periodic: f (θ,φ) = f (θ,φ + 2π) for any function f living on the surface. The
boundary condition in the θ -direction, i.e. across the poles, is slightly more involved. It is
f (θ,φ) = P · f (−θ,φ + π) for arbitrary tensor components f , where the parity P = (−1)k

depends on the rank k of the tensor of which f is a component. Figure 2 demonstrates the
polar boundary condition, especially how the shift by π in the φ-direction comes about (see
also [8]).

This grid allows numerical partial derivatives to be taken only in the θ - and φ-directions.
Equations (1) and (6) also need r-derivatives, and these cannot be taken numerically. However,
the r-derivatives of the coordinate transformation operators are known analytically, and one
can see from the definition of F that ∂rF = 1 by construction. Finally, the partial derivatives
of the 3-metric, which are given in Cartesian coordinates, are calculated before the metric is
interpolated onto the surface.

My choice of evaluating the apparent horizon function directly on the grid that forms the
surface while retaining the Cartesian coordinate system for the tensor components seems to
be an uncommon one. It is also possible to evaluate the apparent horizon function not on
the surface itself, but instead in the three-dimensional spacetime on those grid points that are
close to the surface [4, 9, 10]. This method requires interpolating in both directions between
the surface and the spacelike hypersurface. It also has the disadvantage that the domain of
the equation, i.e. the set of active grid points, changes with the surface, leading to further
complications.

While I represent the shape of the surface using an explicit grid, one different way that
is commonly used is to expand the surface shape in spherical harmonics [11–14, 5]. An
expansion in spherical harmonics does not have coordinate singularities. Furthermore, one
has direct insight into and control over the high spatial frequency components. A multipole

[CQG 20 4719]



Coordinates
• In a 3+1 time evolution, 

the foliation is 
determined by the gauge 
conditions, which is 
chosen according to 
stability properties

• No one (afaik) has 
analysed a 3+1 spacetime 
in a foliation different 
than the given one

• There would be 
interesting questions: In a 
different slicing,

- how do the trapped 
surfaces look?  what is 
the total trapped 
region?

- do extracted waves 
change much?

- do different codes 
converge pointwise?



Final Thoughts

• There are also some tasks which are easier 
numerically:

- Represent arbitrary functions

- Solve ODEs

- Integrate (over a given domain) 

• I don’t want to be blinded by my numerical 
glasses


