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FOLLOWING BONAZZOLA et al. (2004)

T e Conformal 3+1 (a.k.a BSSN) formulation, but use of f;; (with
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covariant derivative.

= 0) as the asymptotic structure of 7;;, and D; the associated

Constrained
evolution

CONFORMAL FACTOR WV

1/12
Fij =Wt Vij with W = (%) , so det9;; = f

Finally,
,~yz‘j _ fij 1 pid
is the deviation of the 3-metric from conformal flatness.

Generalization the gauge introduced by Dirac (1959) to any type of
coordinates:

DIVERGENCE-FREE CONDITION ON A%
D57 = D;h = 0

+ Maximal slicing (K = 0)
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o Wave-like equation for a symmetric tensor: N
6 components - 3 Dirac gauge conditions - (det A4 = 1)
=-2 degrees of freedom

Evolution
Equation

e Work with /1 = f,,;jhij which has a given value: the condition
(det AV = 1) - non-linear condition is imposed with an iteration
on h;

@ the evolution operator appearing is not, in general, hyperbolic
(complex eigenvalues); with the Dirac gauge, it is (result by I.
Cordero).

Simplified numerical problem:
@ solve a flat wave equation for a symmetric tensor [1h" = S,
@ ensure the gauge condition Djhij =0,

@ has a given value of the trace.
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Tensor Wave

o e Use of spherical coordinates:

@ The radial part of a scalar field ¢ is decomposed on a set of
orthonormal polynomials (here Chebyshev);

@ The angular part is decomposed on a set of spherical harmonics
Y/ (0, ), which are eigenvectors of the angular part of the

Nomorieal Laplace operator

Methods
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Accuracy on the solution ~ 10713

Accuracy on the solution ~ 1071
(exponential decay)

(time-differencing)

V(£,m) the operator inversion <= inversion of a ~ 30 x 30 matrix

Non-linear parts are evaluated in the physical space and contribute as
sources to the equations.
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FOLLOWING e.g. THORNE (1980)

e O A 3D vector field V' can be decomposed onto a set of vector

Equation

TN spherical harmonics

V= Z anl(T)Yéi(ev ©) + Eem(T)YeyL;(Qv ©) + Bﬂm(r)YZﬁ(‘gv ®),

m
@ pure spin vector harmonics,

YE o« Yi,r, (longitudinal)

Y o« DY, (transverse)

Y2 o« 7 x DYy, (transverse)

@ orthonormal set of regular
Spherical angular functions,

Harmonics

@ not eigenfunctions of vector
angular Laplacian

V= Z R (1)Yern (6, ), and we define two other potentials

V9 _ @ . 1 aiﬂ 77(7“a 9, 99) - Z E@m(r)nn“
89 sin 8@7 lm

VY = 1 @ + % M(Tv 0, 99) = Z Bgm(r)ng
sin 0 a<p 20’ l,m




POTENTIALS

3 62 VT

ot?

g oV’
r Or

+ An+ =

0u

ot?

2V"
2

20V"

r or
+ Ap

DIFFERENTIAL OPERATORS IN TERMS OF NEW

ST,

ns,

Hs-




DIFFERENTIAL OPERATORS IN TERMS OF NEW
POTENTIALS

Tensor Wave
Equation

Jérome Novak FLAT WAVE OPERATOR (JV?¢ = S* (DIVERGENCE-FREE CASE)

o?vr 20V" 2V"
———— +AV" 4 - = g7
(3'152 o r Or u 7’2 )

% 20V"

I —— A — f—
atZ + n + r or ns,
0u

Ty +Ap = pus.

DIVERGENCE-FREE CONDITION D; V% = 0
ovr 2V’

+

1
“Dgyn =0
87' r u r 9@71




POTENTIALS

Tensor Wave
Equation

DIFFERENTIAL OPERATORS IN TERMS OF NEW

Jérome Noval FLAT WAVE OPERATOR (JV?¢ = S* (DIVERGENCE-FREE CASE)

8PV 20V"  2V” :
———+ AV + — = 97
ot? r Or - 72 ’

0%n 29V"

R A —_ f—
ot? tant r Or e
0%u

—ﬁ I A/z = HMs.

2Vr

r

1
ZDpn =0
T 7 9@7]
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HELMHOLTZ DECOMPOSITION

Tensor Wave
Equation

e Nows Any vector field V' on R3, twice continuously differentiable and with
rapid enough decay at infinity can be uniquely written as

V =V + D¢, with D,V = 0.

from D x V =D x V, one gets

py = py (twice: - and 1- components) |
Time Evolution r C
a’f]v nv 1% aT]V Uivs %4
——+— - — = —4 + - — — (u- component) .
ar + r r or N r r (1 P )
=>the quantities
0 vr
A= ﬁ L ﬂ o J
ar r r

and g are not sensitive to the gradient part of a vector.
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ENSURING DIVERGENCE-FREE CONDITION...
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Equation

From the definition of A and the expression of the wave operator for
a vector, one gets for the source (V"' = S*)

Jérdme Nova

1o} ST
AS — ﬂ + TE -,
or r r
and
DA(V) = Ag J
Time Evolution
once A is known, one can reconstruct the vector V'’ from
0 vr
J + ﬂ I — AV7
or r r
ovr 2Vt 1 .
3 + + —Ap,n = 0 divergence-free condition.
, , ,

and p (since Op = pug).
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from S? compute Ag and ug,
solve the equation for p,
solve the equation for A,

solve the coupled system given by the divergence-free condition
and the definition of A to get V" and 7,

reconstruct V* from V", 1 and p.

Time Evolution
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Tensor Wave
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A 3D symmetric tensor field h can be decomposed onto a set of
tensor pure spin spherical harmonics and one can get 6 scalar
potentials to represent the tensor:

| T | TR | TR TR TR | T |
T T =R R | g | p | W | X

with the following relations:

pre — % _ L@
00  sinf oy’
Method hTLp B L@ %
sinfdp 00’
WO —pee W 1 oW 1 W 9 [ 1 0X
2 T 02 tanf 00 sin?h 9 89<S|n€8g0>’

wo _ PX 10X 1 @X o (1w
002 tanf 00 sin?f 0¢? 90 \sin0 dp |-
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DIVERGENCE-FREE CONDITION H® = D;h% =0

Oh™™ 2R 1 T

H = “Agon— L =
or * +r = 0,
dn  3n 1% T

B = D02 L pg,+2) L4 L=
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ouw  3u

Y = B (A, +2)X =0;

Method 8r + Lt +( 9@+ )

“ELECTRIC TYPE” POTENTIALS “MAGNETIC TYPE”

=-two groups of coupled equations for the wave operator.
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hil = hii 4 DI 4 DIV

... but no possibility to use the curl operator on a symmetric tensor!

3 DEGREES OF FREEDOM FOR h
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DIVERGENCE-FREE PART OF A SYMMETRIC
TENSOR

vatoire  LUT

Tensor Wave
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As for the Helmholtz decomposition:

Jérome Novak

hi = R 4 DVI 4 DIV
... but no possibility to use the curl operator on a symmetric tensor!

WAVE EQUATION

3 DEGREES OF FREEDOM FOR h

Oh7 = 5
. - L
o - %_2;57 2A0@(5g/r+w
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In the case where f;;h"/ = h is given (h"" = h — 7):
@ compute Ag and Bg, }
Method @ solve wave equations for A and B (a wave operator shifted in £),
@ solve the system composed of
o definition of B
e H =0
e H'"=0

o definition of A
o H" =0 (Dirac gauge)

on the one hand, and
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In the case where f;;h"/ = h is given (h"" = h — 7):
@ compute Ag and Bg, }
Method @ solve wave equations for A and B (a wave operator shifted in £),
@ solve the system composed of
o definition of B
e H =0
e H'"=0

o definition of A
o H" =0 (Dirac gauge)

on the one hand, and
on the other hand,

@ recover the tensor components.
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Initial data: Gaussian profile for A" and p,
with £ =2 and ¢ = 3 modes.

Evolution compared to the method of
Bonazzola et al. (2004)
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@ Designed for spectral methods in spherical coordinates (gain in
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SUMMARY AND OUTLOOK

Tensor Wave
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Algorithm to solve the tensor wave equation, ensuring the
divergence-free condition,

@ For a given value of the trace, solve only for two scalar wave
equations,

@ Designed for spectral methods in spherical coordinates (gain in
CPU).

@ Test it with the full Einstein equations,

@ Take into account the full linear operator (with the “shift
Summary advection”),

@ Evolution of one black hole,

@ Extension to bi-spherical coordinates (Ansorg 2005)...
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