Introduction
Constrained evolution
Evolution
Equation
Numerical
Methods

Solution of the Gravitational Wave Tensor Equation Using Spectral Methods

Vector Evolution

Jérôme Novak

Jerome.Novak@obspm.fr

Laboratoire de l'Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris

From Geometry to Numerics, November $21^{\text {st }} 2006$

Introduction

Constrained evolution
Evolution
Equation
Numerical Methods

Vector Evolution
Spherical
Harmonics
PDEs
Time Evolution
Tensor Evolution
Method
Results
Summary
(1) Introduction

- Maximally-constrained evolution scheme
- Evolution Equation
- Numerical Methods
(1) InTRODUCTION
- Maximally-constrained evolution scheme
- Evolution Equation
- Numerical Methods
(2) Divergence-free evolution of A Vector
- Pure-spin vector spherical harmonics
- Differential operators in terms of new potentials
- New system for time evolution
(1) Introduction
- Maximally-constrained evolution scheme
- Evolution Equation
- Numerical Methods
(2) Divergence-free evolution of A Vector
- Pure-spin vector spherical harmonics
- Differential operators in terms of new potentials
- New system for time evolution
(3) DIVERGENCE-FREE EVOLUTION OF A SYMMETRIC TENSOR
- Method
- Results

Flat metric and Dirac gauge
Following Bonazzola et al. (2004)

Tensor Wave

 EquationJérôme Novak

Introduction
Constrained evolution
Evolution
Equation
Numerical Methods

Vector Evolution
Spherical
Harmonics
PDEs
Time Evolution
Tensor Evolution
Method
Results
Summary
Conformal 3+1 (a.k.a BSSN) formulation

Flat metric and Dirac gauge
Following Bonazzola et al. (2004)

Tensor Wave Equation

Introduction

Constrained evolution Evolution Equation Numerical Methods

Vector Evolution
Spherical
Harmonics PDEs
Time Evolution
Tensor Evolution
Method
Results
Summary

Conformal $3+1$ (a.k.a BSSN) formulation, but use of $f_{i j}$ (with $\frac{\partial f_{i j}}{\partial t}=0$) as the asymptotic structure of $\gamma_{i j}$, and \mathcal{D}_{i} the associated covariant derivative.

Flat metric and Dirac gauge
 Following Bonazzola et al. (2004)

Tensor Wave
Equation
Jérôme Novak

Introduction
Constrained
evolution
Evolution
Equation
Numerical
Methods
Vector Evolution
Spherical
Harmonics
PDEs
Time Evolution
Tensor Evolution
Method
Results
Summary

Conformal $3+1$ (a.k.a BSSN) formulation, but use of $f_{i j}$ (with $\frac{\partial f_{i j}}{\partial t}=0$) as the asymptotic structure of $\gamma_{i j}$, and \mathcal{D}_{i} the associated covariant derivative.

Conformal factor ψ

$$
\tilde{\gamma}_{i j}:=\Psi^{-4} \gamma_{i j} \text { with } \psi:=\left(\frac{\gamma}{f}\right)^{1 / 12}, \text { so } \operatorname{det} \tilde{\gamma}_{i j}=f
$$

Finally,

$$
\tilde{\gamma}^{i j}=f^{i j}+h^{i j}
$$

is the deviation of the 3 -metric from conformal flatness.

Conformal $3+1$ (a.k.a BSSN) formulation, but use of $f_{i j}$ (with $\frac{\partial f_{i j}}{\partial t}=0$) as the asymptotic structure of $\gamma_{i j}$, and \mathcal{D}_{i} the associated covariant derivative.

CONFORMAL FACTOR Ψ

$$
\tilde{\gamma}_{i j}:=\Psi^{-4} \gamma_{i j} \text { with } \psi:=\left(\frac{\gamma}{f}\right)^{1 / 12}, \text { so } \operatorname{det} \tilde{\gamma}_{i j}=f
$$

Finally,

$$
\tilde{\gamma}^{i j}=f^{i j}+h^{i j}
$$

is the deviation of the 3 -metric from conformal flatness.
Generalization the gauge introduced by Dirac (1959) to any type of coordinates:

DIVERGENCE-FREE CONDITION ON $\tilde{\gamma}^{i j}$

$$
\mathcal{D}_{j} \tilde{\gamma}^{i j}=\mathcal{D}_{j} h^{i j}=0
$$

+ Maximal slicing $(K=0)$

Einstein equations
 Dirac gauge and maximal SLicing

Tensor Wave
Equation

Jérôme Novak

Introduction
Constrained evolution
Evolution
Equation
Numerical Methods

Vector Evolution
Spherical
Harmonics
PDEs
Time Evolution
Tensor Evolution
Method
Results
Summary

Constraint Equations

$$
\begin{aligned}
\Delta \Psi & =\mathcal{S}_{\mathrm{Ham}} \\
\Delta \beta^{i}+\frac{1}{3} \mathcal{D}^{i}\left(\mathcal{D}_{j} \beta^{j}\right) & =\mathcal{S}_{\mathrm{Mom}}
\end{aligned}
$$

Einstein EQuATIONS

Dirac gauge and maximal SLicing

Tensor Wave Equation

Introduction

Constrained

 evolution
Evolution

Equation
Numerical Methods

Vector Evolution
Spherical
Harmonics
PDEs
Time Evolution
Tensor Evolution
Method
Results
Summary

Constraint Equations

$$
\begin{aligned}
\Delta \Psi & =\mathcal{S}_{\mathrm{Ham}} \\
\Delta \beta^{i}+\frac{1}{3} \mathcal{D}^{i}\left(\mathcal{D}_{j} \beta^{j}\right) & =\mathcal{S}_{\mathrm{Mom}}
\end{aligned}
$$

TRACE OF DYNAMICAL EQUATIONS

$$
\Delta N=\mathcal{S}_{\dot{K}}
$$

DYNAMICAL EQUATIONS

$$
\frac{\partial^{2} h^{i j}}{\partial t^{2}}-\frac{N^{2}}{\Psi^{4}} \Delta h^{i j}-2 £_{\boldsymbol{\beta}} \frac{\partial h^{i j}}{\partial t}+£_{\boldsymbol{\beta}} £_{\boldsymbol{\beta}} h^{i j}=\mathcal{S}_{\mathrm{Dyn}}^{i j}
$$

Tensor Wave Equation

Jérôme Novak

Introduction

Constrained
evolution
Evolution
Equation
Numerical
Methods
Vector Evolution
Spherical
Harmonics
PDEs
Time Evolution
Tensor Evolution
Method
Results
Summary

- Wave-like equation for a symmetric tensor: 6 components

Tensor Wave Equation

Jérôme Novak

Introduction

Constrained
evolution
Evolution
Equation
Numerical
Methods
Vector Evolution
Spherical
Harmonics
PDEs
Time Evolution
Tensor Evolution
Method
Results
Summary

- Wave-like equation for a symmetric tensor: 6 components - 3 Dirac gauge conditions

Tensor Wave Equation

Jérôme Novak

Introduction

Constrained
evolution
Evolution
Equation
Numerical
Methods
Vector Evolution
Spherical
Harmonics
PDEs
Time Evolution
Tensor Evolution
Method
Results
Summary

- Wave-like equation for a symmetric tensor: 6 components - 3 Dirac gauge conditions - $\left(\operatorname{det} \tilde{\gamma}^{i j}=1\right)$

Evolution Equation
POSITION OF THE PROBLEM

Tensor Wave Equation

Jérôme Novak

Introduction

Constrained
evolution
Evolution
Equation
Numerical
Methods
Vector Evolution
Spherical
Harmonics
PDEs
Time Evolution
Tensor Evolution
Method
Results
Summary

- Wave-like equation for a symmetric tensor: 6 components - 3 Dirac gauge conditions - $\left(\operatorname{det} \tilde{\gamma}^{i j}=1\right)$ $\Rightarrow 2$ degrees of freedom

Evolution Equation
 POSITION OF THE PROBLEM

- Wave-like equation for a symmetric tensor: 6 components - 3 Dirac gauge conditions - $\left(\operatorname{det} \tilde{\gamma}^{i j}=1\right)$ $\Rightarrow 2$ degrees of freedom
- Work with $h=f_{i j} h^{i j}$ which has a given value: the condition (det $\tilde{\gamma}^{i j}=1$) - non-linear condition is imposed with an iteration on h;

Evolution Equation

POSITION OF THE PROBLEM

- Wave-like equation for a symmetric tensor: 6 components - 3 Dirac gauge conditions - $\left(\operatorname{det} \tilde{\gamma}^{i j}=1\right)$ $\Rightarrow 2$ degrees of freedom
- Work with $h=f_{i j} h^{i j}$ which has a given value: the condition $\left(\operatorname{det} \tilde{\gamma}^{i j}=1\right)$ - non-linear condition is imposed with an iteration on h;
- the evolution operator appearing is not, in general, hyperbolic (complex eigenvalues); with the Dirac gauge, it is (result by I. Cordero).

Simplified numerical problem:

Evolution Equation

POSITION OF THE PROBLEM

- Wave-like equation for a symmetric tensor: 6 components - 3 Dirac gauge conditions - $\left(\operatorname{det} \tilde{\gamma}^{i j}=1\right)$ $\Rightarrow 2$ degrees of freedom
- Work with $h=f_{i j} h^{i j}$ which has a given value: the condition (det $\tilde{\gamma}^{i j}=1$)- non-linear condition is imposed with an iteration on h;
- the evolution operator appearing is not, in general, hyperbolic (complex eigenvalues); with the Dirac gauge, it is (result by I. Cordero).

Simplified numerical problem:

- solve a flat wave equation for a symmetric tensor $\square h^{i j}=\mathcal{S}^{i j}$,

Evolution Equation
 POSITION OF THE PROBLEM

- Wave-like equation for a symmetric tensor: 6 components - 3 Dirac gauge conditions - $\left(\operatorname{det} \tilde{\gamma}^{i j}=1\right)$ $\Rightarrow 2$ degrees of freedom
- Work with $h=f_{i j} h^{i j}$ which has a given value: the condition $\left(\operatorname{det} \tilde{\gamma}^{i j}=1\right)$ - non-linear condition is imposed with an iteration on h;
- the evolution operator appearing is not, in general, hyperbolic (complex eigenvalues); with the Dirac gauge, it is (result by I. Cordero).

Simplified numerical problem:

- solve a flat wave equation for a symmetric tensor $\square h^{i j}=\mathcal{S}^{i j}$,
- ensure the gauge condition $\mathcal{D}_{j} h^{i j}=0$,
- Wave-like equation for a symmetric tensor: 6 components - 3 Dirac gauge conditions - $\left(\operatorname{det} \tilde{\gamma}^{i j}=1\right)$ $\Rightarrow 2$ degrees of freedom
- Work with $h=f_{i j} h^{i j}$ which has a given value: the condition $\left(\operatorname{det} \tilde{\gamma}^{i j}=1\right)$ - non-linear condition is imposed with an iteration on h;
- the evolution operator appearing is not, in general, hyperbolic (complex eigenvalues); with the Dirac gauge, it is (result by I. Cordero).

Simplified numerical problem:

- solve a flat wave equation for a symmetric tensor $\square h^{i j}=\mathcal{S}^{i j}$,
- ensure the gauge condition $\mathcal{D}_{j} h^{i j}=0$,
- has a given value of the trace.

NUMERICAL LIBRARY LORENE http://www.lorene.obspm.fr

Tensor Wave
Equation

Introduction

Constrained evolution Evolution
Equation
Numerical
Methods
Vector Evolution
Spherical
Harmonics
PDES
Time Evolution
Tensor Evolution
Method
Results
Summary

Use of spherical coordinates:

- The radial part of a scalar field ϕ is decomposed on a set of orthonormal polynomials (here Chebyshev);

Solutions of Poisson and wave equations

NUMERICAL LIBRARY LORENE http://www.lorene.obspm.fr

Tensor Wave Equation

Use of spherical coordinates:

- The radial part of a scalar field ϕ is decomposed on a set of orthonormal polynomials (here Chebyshev);
- The angular part is decomposed on a set of spherical harmonics $Y_{\ell}^{m}(\theta, \varphi)$, which are eigenvectors of the angular part of the Laplace operator

$$
\Delta_{\theta \varphi} Y_{\ell}^{m}=-\ell(\ell+1) Y_{\ell}^{m}
$$

$$
\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}-\frac{\ell(\ell+1)}{r^{2}}\right) \phi_{\ell m}(r)=\sigma_{\ell m}(r)
$$

Accuracy on the solution $\sim 10^{-13}$ (exponential decay)

Solutions of Poisson and wave equations

Tensor Wave Equation

Use of spherical coordinates:

- The radial part of a scalar field ϕ is decomposed on a set of orthonormal polynomials (here Chebyshev);
- The angular part is decomposed on a set of spherical harmonics $Y_{\ell}^{m}(\theta, \varphi)$, which are eigenvectors of the angular part of the Laplace operator

$$
\Delta_{\theta \varphi} Y_{\ell}^{m}=-\ell(\ell+1) Y_{\ell}^{m}
$$

$$
\begin{array}{cc}
\Delta \phi=\sigma & \square \phi=\sigma \\
\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}-\frac{\ell(\ell+1)}{r^{2}}\right) \phi_{\ell m}(r)=\sigma_{\ell m}(r) & {\left[1-\frac{\delta t^{2}}{2}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}-\frac{\ell(\ell+1)}{r^{2}}\right)\right] \phi_{\ell m}^{J+1}=\sigma_{\ell m}^{J}}
\end{array}
$$

Accuracy on the solution $\sim 10^{-13}$ (exponential decay)

Accuracy on the solution $\sim 10^{-10}$ (time-differencing)

Solutions of Poisson and wave equations

Tensor Wave Equation

Use of spherical coordinates:

- The radial part of a scalar field ϕ is decomposed on a set of orthonormal polynomials (here Chebyshev);
- The angular part is decomposed on a set of spherical harmonics $Y_{\ell}^{m}(\theta, \varphi)$, which are eigenvectors of the angular part of the Laplace operator

$$
\Delta_{\theta \varphi} Y_{\ell}^{m}=-\ell(\ell+1) Y_{\ell}^{m}
$$

$$
\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}-\frac{\ell(\ell+1)}{r^{2}}\right) \phi_{\ell m}(r)=\sigma_{\ell m}(r)
$$

$$
\left[1-\frac{\delta t^{2}}{2}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}-\frac{\ell(\ell+1)}{r^{2}}\right)\right] \phi_{\ell m}^{J+1}=\sigma_{\ell m}^{J}
$$

Accuracy on the solution $\sim 10^{-13}$ (exponential decay)

Accuracy on the solution $\sim 10^{-10}$ (time-differencing)
$\square \phi=\sigma$
$\forall(\ell, m)$ the operator inversion \Longleftrightarrow inversion of a $\sim 30 \times 30$ matrix Non-linear parts are evaluated in the physical space and contribute as sources to the equations.

VECTOR SPHERICAL HARMONICS

Following e.g. Thorne (1980)

Tensor Wave Equation

Introduction

Constrained evolution
Evolution
Equation
Numerical
Methods
Vector Evolution
Spherical
Harmonics
PDEs
Time Evolution
Tensor Evolution
Method
Results
Summary

A 3D vector field V can be decomposed onto a set of vector spherical harmonics

$$
\boldsymbol{V}=\sum_{\ell, m} R_{\ell m}(r) \boldsymbol{Y}_{\ell m}^{R}(\theta, \varphi)+E_{\ell m}(r) \boldsymbol{Y}_{\ell m}^{E}(\theta, \varphi)+B_{\ell m}(r) \boldsymbol{Y}_{\ell m}^{B}(\theta, \varphi)
$$

- pure spin vector harmonics,

$$
\begin{aligned}
& \boldsymbol{Y}_{\ell m}^{R} \propto Y_{\ell m} \boldsymbol{r}, \text { (longitudinal) } \\
& \boldsymbol{Y}_{\ell m}^{E} \propto \mathcal{D} Y_{\ell m}, \text { (transverse) } \\
& \boldsymbol{Y}_{\ell m}^{B} \propto \boldsymbol{r} \times \mathcal{D} Y_{\ell m} \text { (transverse) }
\end{aligned}
$$

VECTOR SPHERICAL HARMONICS

Following e.g. Thorne (1980)

Tensor Wave
Equation

Introduction
Constrained evolution
Evolution
Equation
Numerical
Methods
Vector Evolution
Spherical Harmonics PDES
Time Evolution
Tensor Evolution
Method
Results
Summary

A 3D vector field V can be decomposed onto a set of vector spherical harmonics

$$
\boldsymbol{V}=\sum_{\ell, m} R_{\ell m}(r) \boldsymbol{Y}_{\ell m}^{R}(\theta, \varphi)+E_{\ell m}(r) \boldsymbol{Y}_{\ell m}^{E}(\theta, \varphi)+B_{\ell m}(r) \boldsymbol{Y}_{\ell m}^{B}(\theta, \varphi),
$$

- pure spin vector harmonics,

$$
\begin{aligned}
& \boldsymbol{Y}_{\ell m}^{R} \propto Y_{\ell m} \boldsymbol{r}, \text { (longitudinal) } \\
& \boldsymbol{Y}_{\ell m}^{E} \propto \mathcal{D} Y_{\ell m}, \text { (transverse) } \\
& \boldsymbol{Y}_{\ell m}^{B} \propto \boldsymbol{r} \times \mathcal{D} Y_{\ell m} \text { (transverse) }
\end{aligned}
$$

- orthonormal set of regular angular functions,

VECTOR SPHERICAL HARMONICS

Following e.g. Thorne (1980)

Tensor Wave Equation

A 3D vector field V can be decomposed onto a set of vector spherical harmonics

$$
\boldsymbol{V}=\sum_{\ell, m} R_{\ell m}(r) \boldsymbol{Y}_{\ell m}^{R}(\theta, \varphi)+E_{\ell m}(r) \boldsymbol{Y}_{\ell m}^{E}(\theta, \varphi)+B_{\ell m}(r) \boldsymbol{Y}_{\ell m}^{B}(\theta, \varphi),
$$

- pure spin vector harmonics,
- orthonormal set of regular angular functions,
- not eigenfunctions of vector

$$
\begin{aligned}
& \boldsymbol{Y}_{\ell m}^{R} \propto Y_{\ell m} \boldsymbol{r}, \text { (longitudinal) } \\
& \boldsymbol{Y}_{\ell m}^{E} \propto \mathcal{D} Y_{\ell m}, \text { (transverse) } \\
& \boldsymbol{Y}_{\ell m}^{B} \propto \boldsymbol{r} \times \mathcal{D} Y_{\ell m} \text { (transverse) }
\end{aligned}
$$ angular Laplacian

VECTOR SPHERICAL HARMONICS

Tensor Wave
Equation

A 3D vector field V can be decomposed onto a set of vector spherical harmonics

$$
\boldsymbol{V}=\sum_{\ell, m} R_{\ell m}(r) \boldsymbol{Y}_{\ell m}^{R}(\theta, \varphi)+E_{\ell m}(r) \boldsymbol{Y}_{\ell m}^{E}(\theta, \varphi)+B_{\ell m}(r) \boldsymbol{Y}_{\ell m}^{B}(\theta, \varphi),
$$

- pure spin vector harmonics, $\quad \boldsymbol{Y}_{\ell m}^{R} \propto Y_{\ell m} \boldsymbol{r}$, (longitudinal)
- orthonormal set of regular angular functions,

$$
\boldsymbol{Y}_{\ell m}^{E} \propto \mathcal{D} Y_{\ell m}, \text { (transverse) }
$$

- not eigenfunctions of vector

$$
\boldsymbol{Y}_{\ell m}^{B} \propto \boldsymbol{r} \times \mathcal{D} Y_{\ell m} \text { (transverse) }
$$ angular Laplacian

$V^{r}=\sum R_{\ell m}(r) Y_{\ell m}(\theta, \varphi)$, and we define two other potentials

$$
\begin{aligned}
& \eta(r, \theta, \varphi)=\sum_{\ell, m} E_{\ell m}(r) Y_{\ell m} \\
& \mu(r, \theta, \varphi)=\sum_{\ell, m} B_{\ell m}(r) Y_{\ell m}
\end{aligned}
$$

VECTOR SPHERICAL HARMONICS

Tensor Wave Equation

A 3D vector field V can be decomposed onto a set of vector spherical harmonics

$$
\boldsymbol{V}=\sum_{\ell, m} R_{\ell m}(r) \boldsymbol{Y}_{\ell m}^{R}(\theta, \varphi)+E_{\ell m}(r) \boldsymbol{Y}_{\ell m}^{E}(\theta, \varphi)+B_{\ell m}(r) \boldsymbol{Y}_{\ell m}^{B}(\theta, \varphi)
$$

- pure spin vector harmonics,

$$
\begin{aligned}
& \boldsymbol{Y}_{\ell m}^{R} \propto Y_{\ell m} \boldsymbol{r}, \text { (longitudinal) } \\
& \boldsymbol{Y}_{\ell m}^{E} \propto \mathcal{D} Y_{\ell m}, \text { (transverse) } \\
& \boldsymbol{Y}_{\ell m}^{B} \propto \boldsymbol{r} \times \mathcal{D} Y_{\ell m} \text { (transverse) }
\end{aligned}
$$

- orthonormal set of regular angular functions,
- not eigenfunctions of vector angular Laplacian

$$
V^{r}=\sum R_{\ell m}(r) Y_{\ell m}(\theta, \varphi) \text {, and we define two other potentials }
$$

$$
\begin{aligned}
V^{\theta} & =\frac{\partial \eta}{\partial \theta}-\frac{1}{\sin \theta} \frac{\partial \mu}{\partial \varphi}, & \eta(r, \theta, \varphi) & =\sum_{\ell, m} E_{\ell m}(r) Y_{\ell m} \\
V^{\varphi} & =\frac{1}{\sin \theta} \frac{\partial \eta}{\partial \varphi}+\frac{\partial \mu}{\partial \theta} ; & \mu(r, \theta, \varphi) & =\sum_{\ell, m} B_{\ell m}(r) Y_{\ell m}
\end{aligned}
$$

DIFFERENTIAL OPERATORS IN TERMS OF NEW POTENTIALS

Tensor Wave Equation

Introduction

Constrained evolution
Evolution
Equation
Numerical
Methods
Vector Evolution
Spherical Harmonics PDEs
Time Evolution
Tensor Evolution
Method
Results
Summary

Flat wave operator $\square V^{i}=S^{i}$ (DIVERGENCE-FREE CASE)

$$
\begin{aligned}
-\frac{\partial^{2} V^{r}}{\partial t^{2}}+\Delta V^{r}+\frac{2}{r} \frac{\partial V^{r}}{\partial r}+\frac{2 V^{r}}{r^{2}} & =S^{r} \\
-\frac{\partial^{2} \eta}{\partial t^{2}}+\Delta \eta+\frac{2}{r} \frac{\partial V^{r}}{\partial r} & =\eta_{S} \\
-\frac{\partial^{2} \mu}{\partial t^{2}}+\Delta \mu & =\mu_{S}
\end{aligned}
$$ POTENTIALS

Tensor Wave Equation

Introduction
Constrained evolution
Evolution
Equation
Numerical
Methods
Vector Evolution
Spherical Harmonics PDEs
Time Evolution
Tensor Evolution Method Results Summary

Flat wave operator $\square V^{i}=S^{i}$ (DIVERGENCE-FREE CASE)

$$
\begin{aligned}
-\frac{\partial^{2} V^{r}}{\partial t^{2}}+\Delta V^{r}+\frac{2}{r} \frac{\partial V^{r}}{\partial r}+\frac{2 V^{r}}{r^{2}} & =S^{r} \\
-\frac{\partial^{2} \eta}{\partial t^{2}}+\Delta \eta+\frac{2}{r} \frac{\partial V^{r}}{\partial r} & =\eta_{S} \\
-\frac{\partial^{2} \mu}{\partial t^{2}}+\Delta \mu & =\mu_{S}
\end{aligned}
$$

DIVERGENCE-FREE CONDITION $\mathcal{D}_{i} V^{i}=0$

$$
\frac{\partial V^{r}}{\partial r}+\frac{2 V^{r}}{r}+\frac{1}{r} \Delta_{\theta \varphi} \eta=0
$$

Introduction
Constrained evolution
Evolution
Equation
Numerical Methods

Vector Evolution
Spherical Harmonics PDEs
Time Evolution
Tensor Evolution Method Results Summary

DIFFERENTIAL OPERATORS IN TERMS OF NEW POTENTIALS

Flat wave operator $\square V^{i}=S^{i}$ (DIVERGENCE-FREE CASE)

$$
\begin{aligned}
-\frac{\partial^{2} V^{r}}{\partial t^{2}}+\Delta V^{r}+\frac{2}{r} \frac{\partial V^{r}}{\partial r}+\frac{2 V^{r}}{r^{2}} & =S^{r} \\
-\frac{\partial^{2} \eta}{\partial t^{2}}+\Delta \eta+\frac{2}{r} \frac{\partial V^{r}}{\partial r} & =\eta_{S} \\
-\frac{\partial^{2} \mu}{\partial t^{2}}+\Delta \mu & =\mu_{S}
\end{aligned}
$$

DIVERGENCE-FREE CONDITION $\mathcal{D}_{i} V^{i}=0$

$$
\frac{\partial V^{r}}{\partial r}+\frac{2 V^{r}}{r}+\frac{1}{r} \Delta_{\theta \varphi} \eta=0
$$

... thus μ does not depend on the divergence of V.

Helmholtz Decomposition

Any vector field V on \mathbb{R}^{3}, twice continuously differentiable and with rapid enough decay at infinity can be uniquely written as

$$
\boldsymbol{V}=\tilde{\boldsymbol{V}}+\mathcal{D} \phi, \text { with } \mathcal{D}_{i} \tilde{V}^{i}=0
$$

Any vector field V on \mathbb{R}^{3}, twice continuously differentiable and with rapid enough decay at infinity can be uniquely written as

$$
\begin{gathered}
\qquad \begin{aligned}
\boldsymbol{V} & =\tilde{\boldsymbol{V}}+\mathcal{D} \phi, \text { with } \mathcal{D}_{i} \tilde{V}^{i}=0 \\
\text { from } \mathcal{D} \times \boldsymbol{V}=\mathcal{D} \times \tilde{\boldsymbol{V}} & \text {, one gets } \\
\mu_{V} & =\mu_{\tilde{V}} \text { (twice: } r \text { - and } \eta \text { - components) } \\
\frac{\partial \eta_{V}}{\partial r}+\frac{\eta_{V}}{r}-\frac{V^{r}}{r} & =\frac{\partial \eta_{\tilde{V}}}{\partial r}+\frac{\eta_{\tilde{V}}}{r}-\frac{\tilde{V}^{r}}{r}(\mu \text { - component) }
\end{aligned}
\end{gathered}
$$

Any vector field V on \mathbb{R}^{3}, twice continuously differentiable and with rapid enough decay at infinity can be uniquely written as

$$
\boldsymbol{V}=\tilde{\boldsymbol{V}}+\mathcal{D} \phi, \text { with } \mathcal{D}_{i} \tilde{V}^{i}=0
$$

from $\mathcal{D} \times V=\mathcal{D} \times \tilde{\boldsymbol{V}}$, one gets

$$
\begin{aligned}
\mu_{V} & =\mu_{\tilde{V}} \text { (twice: } r \text { - and } \eta \text { - components), } \\
\frac{\partial \eta_{V}}{\partial r}+\frac{\eta_{V}}{r}-\frac{V^{r}}{r} & =\frac{\partial \eta_{\tilde{\tilde{}}}}{\partial r}+\frac{\eta_{\tilde{V}}}{r}-\frac{\tilde{V}^{r}}{r}(\mu \text { - component) } .
\end{aligned}
$$

\Rightarrow the quantities

$$
A=\frac{\partial \eta}{\partial r}+\frac{\eta}{r}-\frac{V^{r}}{r}
$$

and μ are not sensitive to the gradient part of a vector.

Evolution EQuAtions

ENSURING DIVERGENCE-FREE CONDITION...

Tensor Wave
Equation

Introduction

Constrained evolution Evolution Equation
Numerical Methods

Vector Evolution
Spherical
Harmonics
PDEs
Time Evolution

From the definition of A and the expression of the wave operator for a vector, one gets for the source ($\square V^{i}=S^{i}$)

$$
A_{S}=\frac{\partial \eta_{S}}{\partial r}+\frac{\eta_{S}}{r}-\frac{S^{r}}{r}
$$

From the definition of A and the expression of the wave operator for a vector, one gets for the source ($\square V^{i}=S^{i}$)

$$
A_{S}=\frac{\partial \eta_{S}}{\partial r}+\frac{\eta_{S}}{r}-\frac{S^{r}}{r},
$$

and

$$
\square A(V)=A_{S}
$$

once A is known, one can reconstruct the vector V^{i} from

$$
\begin{aligned}
\frac{\partial \eta}{\partial r}+\frac{\eta}{r}-\frac{V^{r}}{r} & =A_{V} \\
\frac{\partial V^{r}}{\partial r}+\frac{2 V^{r}}{r}+\frac{1}{r} \Delta_{\theta \varphi} \eta & =0 \text { divergence-free condition. }
\end{aligned}
$$

From the definition of A and the expression of the wave operator for a vector, one gets for the source ($\square V^{i}=S^{i}$)

$$
A_{S}=\frac{\partial \eta_{S}}{\partial r}+\frac{\eta_{S}}{r}-\frac{S^{r}}{r},
$$

and

$$
\square A(V)=A_{S}
$$

once A is known, one can reconstruct the vector V^{i} from

$$
\begin{aligned}
\frac{\partial \eta}{\partial r}+\frac{\eta}{r}-\frac{V^{r}}{r} & =A_{V} \\
\frac{\partial V^{r}}{\partial r}+\frac{2 V^{r}}{r}+\frac{1}{r} \Delta_{\theta \varphi} \eta & =0 \text { divergence-free condition. }
\end{aligned}
$$

and μ (since $\left.\square \mu=\mu_{S}\right)$.

InTEGRATION PROCEDURE

Tensor Wave Equation

Jérôme Novak

Introduction
Constrained
evolution
Evolution
Equation
Numerical Methods

Vector Evolution
Spherical
Harmonics
PDEs
Time Evolution
Tensor Evolution
Method
Results
Summary
(1) from S^{i} compute A_{S} and μ_{S},
(1) from S^{i} compute A_{S} and μ_{S},
(2) solve the equation for μ,

INTEGRATION PROCEDURE

Introduction

Constrained
evolution
Evolution
Equation
Numerical
Methods
Vector Evolution
Spherical
Harmonics
PDEs
Time Evolution
(1) from S^{i} compute A_{S} and μ_{S},
(2) solve the equation for μ,
(3) solve the equation for A,

INTEGRATION PROCEDURE

(1) from S^{i} compute A_{S} and μ_{S},
(2) solve the equation for μ,

- solve the equation for A,
(1) solve the coupled system given by the divergence-free condition and the definition of A to get V^{r} and η,

INTEGRATION PROCEDURE

(c) from S^{i} compute A_{S} and μ_{S},
(2) solve the equation for μ,
(3) solve the equation for A,
(1) solve the coupled system given by the divergence-free condition and the definition of A to get V^{r} and η,
(0) reconstruct V^{i} from V^{r}, η and μ.

TENSOR SPHERICAL HARMONICS

Tensor Wave Equation

Introduction

Constrained
evolution
Evolution
Equation
Numerical
Methods
Vector Evolution
Spherical
Harmonics
PDEs
Time Evolution

Method
Results
Summary

A 3D symmetric tensor field h can be decomposed onto a set of tensor pure spin spherical harmonics and one can get 6 scalar potentials to represent the tensor:

$\boldsymbol{T}^{L_{0}}$	$\boldsymbol{T}^{T_{0}}$	$\boldsymbol{T}^{E_{1}}$	$\boldsymbol{T}^{B_{1}}$	$\boldsymbol{T}^{E_{2}}$	$\boldsymbol{T}^{B_{2}}$
$h^{r r}$	$\tau=h^{\theta \theta}+h^{\varphi \varphi}$	η	μ	W	X

Tensor Wave Equation

A 3D symmetric tensor field h can be decomposed onto a set of tensor pure spin spherical harmonics and one can get 6 scalar potentials to represent the tensor:

$\boldsymbol{T}^{L_{0}}$	$\boldsymbol{T}^{T_{0}}$	$\boldsymbol{T}^{E_{1}}$	$\boldsymbol{T}^{B_{1}}$	$\boldsymbol{T}^{E_{2}}$	$\boldsymbol{T}^{B_{2}}$
$h^{r r}$	$\tau=h^{\theta \theta}+h^{\varphi \varphi}$	η	μ	W	X

with the following relations:

$$
\begin{aligned}
h^{r \theta} & =\frac{\partial \eta}{\partial \theta}-\frac{1}{\sin \theta} \frac{\partial \mu}{\partial \varphi} \\
h^{r \varphi} & =\frac{1}{\sin \theta} \frac{\partial \eta}{\partial \varphi}+\frac{\partial \mu}{\partial \theta} \\
\frac{h^{\theta \theta}-h^{\varphi \varphi}}{2} & =\frac{\partial^{2} W}{\partial \theta^{2}}-\frac{1}{\tan \theta} \frac{\partial W}{\partial \theta}-\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} W}{\partial \varphi^{2}}-2 \frac{\partial}{\partial \theta}\left(\frac{1}{\sin \theta} \frac{\partial X}{\partial \varphi}\right) \\
h^{\theta \varphi} & =\frac{\partial^{2} X}{\partial \theta^{2}}-\frac{1}{\tan \theta} \frac{\partial X}{\partial \theta}-\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} X}{\partial \varphi^{2}}+2 \frac{\partial}{\partial \theta}\left(\frac{1}{\sin \theta} \frac{\partial W}{\partial \varphi}\right)
\end{aligned}
$$

Divergence-free condition $H^{i}=\mathcal{D}_{j} h^{i j}=0$

Introduction

Constrained
evolution
Evolution
Equation
Numerical
Methods
Vector Evolution
Spherical
Harmonics
PDEs
Time Evolution
Tensor Evolution
Method
Results

$$
\begin{aligned}
H^{r} & =\frac{\partial h^{r r}}{\partial r}+\frac{2 h^{r r}}{r}+\frac{1}{r} \Delta_{\theta \varphi} \eta-\frac{\tau}{r}=0 \\
H^{\eta} & =\frac{\partial \eta}{\partial r}+\frac{3 \eta}{r}+\left(\Delta_{\theta \varphi}+2\right) \frac{W}{r}+\frac{\tau}{2 r}=0 \\
H^{\mu} & =\frac{\partial \mu}{\partial r}+\frac{3 \mu}{r}+\left(\Delta_{\theta \varphi}+2\right) X=0
\end{aligned}
$$

Divergence-free condition $H^{i}=\mathcal{D}_{j} h^{i j}=0$

Introduction

Constrained evolution
Evolution
Equation
Numerical
Methods
Vector Evolution
Spherical
Harmonics
PDEs
Time Evolution
Tensor Evolution
Method Results

$$
\begin{aligned}
H^{r} & =\frac{\partial h^{r r}}{\partial r}+\frac{2 h^{r r}}{r}+\frac{1}{r} \Delta_{\theta \varphi} \eta-\frac{\tau}{r}=0 \\
H^{\eta} & =\frac{\partial \eta}{\partial r}+\frac{3 \eta}{r}+\left(\Delta_{\theta \varphi}+2\right) \frac{W}{r}+\frac{\tau}{2 r}=0, \\
H^{\mu} & =\frac{\partial \mu}{\partial r}+\frac{3 \mu}{r}+\left(\Delta_{\theta \varphi}+2\right) X=0
\end{aligned}
$$

"ELECTRIC TYPE" POTENTIALS

$$
h^{r r}, \tau, \eta, W
$$

DIVERGENCE-FREE CONDITION $H^{i}=\mathcal{D}_{j} h^{i j}=0$

$$
\begin{aligned}
H^{r} & =\frac{\partial h^{r r}}{\partial r}+\frac{2 h^{r r}}{r}+\frac{1}{r} \Delta_{\theta \varphi} \eta-\frac{\tau}{r}=0 \\
H^{\eta} & =\frac{\partial \eta}{\partial r}+\frac{3 \eta}{r}+\left(\Delta_{\theta \varphi}+2\right) \frac{W}{r}+\frac{\tau}{2 r}=0, \\
H^{\mu} & =\frac{\partial \mu}{\partial r}+\frac{3 \mu}{r}+\left(\Delta_{\theta \varphi}+2\right) X=0
\end{aligned}
$$

> "MAGNETIC TYPE"
> μ, X
\Rightarrow two groups of coupled equations for the wave operator.

DIVERGENCE-FREE PART OF A SYMMETRIC TENSOR

As for the Helmholtz decomposition:

$$
h^{i j}=\tilde{h}^{i j}+\mathcal{D}^{i} V^{j}+\mathcal{D}^{j} V^{i}
$$

Introduction
Constrained evolution Evolution Equation Numerical Methods

Vector Evolution
Spherical
Harmonics
PDEs
Time Evolution

Method
Results
Summary TENSOR

As for the Helmholtz decomposition:

$$
h^{i j}=\tilde{h}^{i j}+\mathcal{D}^{i} V^{j}+\mathcal{D}^{j} V^{i}
$$

... but no possibility to use the curl operator on a symmetric tensor!

DIVERGENCE-FREE PART OF A SYMMETRIC TENSOR

Introduction

Constrained evolution
Evolution
Equation
Numerical
As for the Helmholtz decomposition:

$$
h^{i j}=\tilde{h}^{i j}+\mathcal{D}^{i} V^{j}+\mathcal{D}^{j} V^{i}
$$

... but no possibility to use the curl operator on a symmetric tensor!
3 DEGREES OF FREEDOM FOR \tilde{h}

$$
\begin{aligned}
A & =\frac{\partial X}{\partial r}-\frac{\mu}{r} \\
B & =\frac{\partial W}{\partial r}-\frac{1}{2 r} \Delta_{\theta \varphi} W-\frac{\eta}{r}+\frac{\tau}{4 r}, \\
C & =\frac{\partial \tau}{\partial r}-\frac{2 h^{r r}}{r}-2 \Delta_{\theta \varphi}\left(\frac{\partial W}{\partial r}+\frac{W}{r}\right)
\end{aligned}
$$

Introduction
Constrained evolution Evolution Equation
Numerical Methods

Vector Evolution
Spherical Harmonics PDEs
Time Evolution Tensor Evolution Method Results Summary

DIVERGENCE-FREE PART OF A SYMMETRIC TENSOR

As for the Helmholtz decomposition:

$$
h^{i j}=\tilde{h}^{i j}+\mathcal{D}^{i} V^{j}+\mathcal{D}^{j} V^{i}
$$

... but no possibility to use the curl operator on a symmetric tensor!

$$
\begin{array}{rlr}
3 \text { DEGREES OF FREEDOM FOR } \tilde{h} & \text { WAVE EQUATION } \\
A=\frac{\partial X}{\partial r}-\frac{\mu}{r}, & \square h^{i j}=S^{i j} \\
A=\frac{\partial W}{\partial r}-\frac{1}{2 r} \Delta_{\theta \varphi} W-\frac{\eta}{r}+\frac{\tau}{4 r}, & \square B+\frac{C}{2 r} \\
C=\frac{\partial \tau}{\partial r}-\frac{2 h^{r r}}{r}-2 \Delta_{\theta \varphi}\left(\frac{\partial W}{\partial r}+\frac{W}{r}\right) & \square C-\frac{2 C}{r^{2}}-\frac{8 \Delta_{\theta \varphi}}{r^{2}}
\end{array}
$$

DIVERGENCE-FREE EVOLUTION

Tensor Wave
Equation
Jérôme Novak

Introduction
Constrained
evolution
Evolution
Equation
Numerical
Methods
Vector Evolution
Spherical
Harmonics
PDEs
Time Evolution
Tensor Evolution
Method
Results
Summary

DEFINE ℓ BY ℓ

$$
\begin{aligned}
\tilde{B}_{\ell m} & =2 B_{\ell m}+\frac{C_{\ell m}}{2(\ell+1)}, \\
\tilde{C}_{\ell m} & =2 B_{\ell m}-\frac{C_{\ell m}}{2 \ell} ;
\end{aligned}
$$

DIVERGENCE-FREE EVOLUTION

Tensor Wave Equation

Define ℓ by ℓ
 WAVE EQUATION $\square h^{i j}=S^{i j}$

$$
\begin{aligned}
\tilde{B}_{\ell m} & =2 B_{\ell m}+\frac{C_{\ell m}}{2(\ell+1)} \\
\tilde{C}_{\ell m} & =2 B_{\ell m}-\frac{C_{\ell m}}{2 \ell}
\end{aligned}
$$

$$
\begin{array}{r}
\square \tilde{B}+\frac{2 \ell \tilde{B}}{r^{2}}=\tilde{B}_{S}, \\
\square \tilde{C}-\frac{2(\ell+1) \tilde{C}}{r^{2}}=\tilde{C}_{S} .
\end{array}
$$

In the case where $f_{i j} h^{i j}=h$ is given $\left(h^{r r}=h-\tau\right)$:
(c) compute A_{S} and \tilde{B}_{S},

In the case where $f_{i j} h^{i j}=h$ is given $\left(h^{r r}=h-\tau\right)$:
(1) compute A_{S} and \tilde{B}_{S},
(2) solve wave equations for A and \tilde{B} (a wave operator shifted in ℓ),

WAVE EQUATION $\square h^{i j}=S^{i j}$

$$
\begin{aligned}
\tilde{B}_{\ell m} & =2 B_{\ell m}+\frac{C_{\ell m}}{2(\ell+1)} \\
\tilde{C}_{\ell m} & =2 B_{\ell m}-\frac{C_{\ell m}}{2 \ell}
\end{aligned}
$$

$$
\begin{array}{r}
\square \tilde{B}+\frac{2 \ell \tilde{B}}{r^{2}}=\tilde{B}_{S}, \\
\square \tilde{C}-\frac{2(\ell+1) \tilde{C}}{r^{2}}=\tilde{C}_{S} .
\end{array}
$$

In the case where $f_{i j} h^{i j}=h$ is given $\left(h^{r r}=h-\tau\right)$:
(1) compute A_{S} and \tilde{B}_{S},
(2) solve wave equations for A and \tilde{B} (a wave operator shifted in ℓ),

- solve the system composed of
- definition of A
- $H^{\mu}=0$ (Dirac gauge)
on the one hand, and

WAVE EQUATION $\square h^{i j}=S^{i j}$

$$
\begin{aligned}
\tilde{B}_{\ell m} & =2 B_{\ell m}+\frac{C_{\ell m}}{2(\ell+1)} \\
\tilde{C}_{\ell m} & =2 B_{\ell m}-\frac{C_{\ell m}}{2 \ell}
\end{aligned}
$$

$$
\begin{array}{r}
\square \tilde{B}+\frac{2 \ell \tilde{B}}{r^{2}}=\tilde{B}_{S}, \\
\square \tilde{C}-\frac{2(\ell+1) \tilde{C}}{r^{2}}=\tilde{C}_{S} .
\end{array}
$$

In the case where $f_{i j} h^{i j}=h$ is given $\left(h^{r r}=h-\tau\right)$:
(1) compute A_{S} and \tilde{B}_{S},
(2) solve wave equations for A and \tilde{B} (a wave operator shifted in ℓ),

- solve the system composed of
- definition of A
- definition of \tilde{B}
- $H^{r}=0$
- $H^{\mu}=0$ (Dirac gauge)
- $H^{\eta}=0$
on the one hand, and
on the other hand,

DEFINE ℓ BY $\ell \quad$ WAVE EQUATION $\square h^{i j}=S^{i j}$

$$
\begin{aligned}
\tilde{B}_{\ell m} & =2 B_{\ell m}+\frac{C_{\ell m}}{2(\ell+1)} \\
\tilde{C}_{\ell m} & =2 B_{\ell m}-\frac{C_{\ell m}}{2 \ell}
\end{aligned}
$$

$$
\begin{array}{r}
\square \tilde{B}+\frac{2 \ell \tilde{B}}{r^{2}}=\tilde{B}_{S}, \\
\square \tilde{C}-\frac{2(\ell+1) \tilde{C}}{r^{2}}=\tilde{C}_{S} .
\end{array}
$$

In the case where $f_{i j} h^{i j}=h$ is given $\left(h^{r r}=h-\tau\right)$:
(1) compute A_{S} and \tilde{B}_{S},
(2) solve wave equations for A and \tilde{B} (a wave operator shifted in ℓ),
(3) solve the system composed of

- definition of A
- definition of \tilde{B}
- $H^{r}=0$
- $H^{\mu}=0$ (Dirac gauge)
- $H^{\eta}=0$
on the one hand, and
on the other hand,
(1) recover the tensor components.

Numbrical Tests

Is THE WAVE EQUATION SOLVED?

Introduction

Constrained evolution
Evolution Equation
Numerical Methods

Vector Evolution
Spherical
Harmonics
PDEs
Time Evolution

Initial data: Gaussian profile for $h^{r r}$ and μ, with $\ell=2$ and $\ell=3$ modes. Evolution compared to the method of Bonazzola et al. (2004)
$\square h^{i j}=0$, with $\mathcal{D}_{j} h^{i j}=0$ and $\operatorname{det} f^{i j}+h^{i j}=1$ $d t=0.02, R=20$.
4 domains with 33 points in each.

Numerical Tests
Is THE SOLUTION DIVERGENCE-FREE?

Tensor Wave Equation

Introduction
Constrained evolution

Evolution
Equation
Numerical Methods

Vector Evolution
Spherical
Harmonics
PDEs
Time Evolution
Iensor Evolution
Method
Results
Summary

Introduction

Constrained evolution
Evolution
Equation
Numerical Methods

Vector Evolution
Spherical
Harmonics
PDEs
Time Evolution

- Algorithm to solve the tensor wave equation, ensuring the divergence-free condition,
- For a given value of the trace, solve only for two scalar wave equations,
- Designed for spectral methods in spherical coordinates (gain in CPU).
- Algorithm to solve the tensor wave equation, ensuring the divergence-free condition,
- For a given value of the trace, solve only for two scalar wave equations,
- Designed for spectral methods in spherical coordinates (gain in CPU).
- Test it with the full Einstein equations,
- Take into account the full linear operator (with the "shift advection"),
- Evolution of one black hole,
- Extension to bi-spherical coordinates (Ansorg 2005)...

風 M．Ansorg，Phys．Rev．D 72024018 （2005）．
S．Bonazzola，E．Gourgoulhon，P．Grandclément and J．Novak， Phys．Rev．D 70104007 （2004）．
R P．A．M．Dirac，Phys．Rev．114， 924 （1959）．
J．Mathews，J．Soc．Indust．Appl．Math．10， 768 （1962）．
國 K．Thorne，Rev．Mod．Physics 52， 299 （1980）．
囯 F．J．Zerilli，J．Math．Physics 11， 2203 （1970）．

$$
\begin{aligned}
\Delta_{\theta \varphi} \eta= & \left(\frac{\partial h^{r \theta}}{\partial \theta}+\frac{h^{r \theta}}{\tan \theta}+\frac{1}{\sin \theta} \frac{\partial h^{r \varphi}}{\partial \varphi}\right) \\
\Delta_{\theta \varphi} \mu= & \left(\frac{\partial h^{r \varphi}}{\partial \theta}+\frac{h^{r \varphi}}{\tan \theta}-\frac{1}{\sin \theta} \frac{\partial h^{r \theta}}{\partial \varphi}\right), \\
\Delta_{\theta \varphi}\left(\Delta_{\theta \varphi}+2\right) W= & \frac{\partial^{2} P}{\partial \theta^{2}}+\frac{3}{\tan \theta} \frac{\partial P}{\partial \theta}-\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} P}{\partial \varphi^{2}}-2 P \\
& +\frac{2}{\sin \theta} \frac{\partial}{\partial \varphi}\left(\frac{\partial h^{\theta \varphi}}{\partial \theta}+\frac{h^{\theta \varphi}}{\tan \theta}\right), \\
\Delta_{\theta \varphi}\left(\Delta_{\theta \varphi}+2\right) X= & \frac{\partial^{2} h^{\theta \varphi}}{\partial \theta^{2}}+\frac{3}{\tan \theta} \frac{\partial h^{\theta \varphi}}{\partial \theta}-\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} h^{\theta \varphi}}{\partial \varphi^{2}}-2 h^{\theta \varphi} \\
& -\frac{2}{\sin \theta} \frac{\partial}{\partial \varphi}\left(\frac{\partial P}{\partial \theta}+\frac{P}{\tan \theta}\right) .
\end{aligned}
$$

