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Flat metric and Dirac gauge
Following Bonazzola et al. (2004)

Conformal 3+1 (a.k.a BSSN) formulation, but use of fij (with
∂fij

∂t
= 0) as the asymptotic structure of γij , and Di the associated

covariant derivative.

Conformal factor Ψ

γ̃ij := Ψ−4 γij with Ψ :=
(

γ
f

)1/12

, so det γ̃ij = f

Finally,
γ̃ij = f ij + hij

is the deviation of the 3-metric from conformal flatness.
Generalization the gauge introduced by Dirac (1959) to any type of
coordinates:

divergence-free condition on γ̃ij

Dj γ̃
ij = Djh

ij = 0

+ Maximal slicing (K = 0)
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Jérôme Novak

Introduction

Constrained
evolution

Evolution
Equation

Numerical
Methods

Vector Evolution

Spherical
Harmonics

PDEs

Time Evolution

Tensor Evolution

Method

Results

Summary

Einstein equations
Dirac gauge and maximal slicing

Constraint Equations

∆Ψ = SHam,

∆βi +
1

3
Di

“
Djβ

j
”

= SMom.

Trace of dynamical equations

∆N = SK̇

Dynamical equations

∂2hij

∂t2
− N 2

Ψ4
∆hij − 2£β

∂hij

∂t
+ £β£βhij = Sij

Dyn
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Evolution Equation
Position of the problem

Wave-like equation for a symmetric tensor:
6 components - 3 Dirac gauge conditions -

(
det γ̃ij = 1

)
⇒2 degrees of freedom

Work with h = fijh
ij which has a given value: the condition(

det γ̃ij = 1
)

- non-linear condition is imposed with an iteration
on h;

the evolution operator appearing is not, in general, hyperbolic
(complex eigenvalues); with the Dirac gauge, it is (result by I.
Cordero).

Simplified numerical problem:

solve a flat wave equation for a symmetric tensor �hij = Sij ,

ensure the gauge condition Djh
ij = 0,

has a given value of the trace.
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Solutions of Poisson and wave equations
numerical library LORENE http://www.lorene.obspm.fr

Use of spherical coordinates:

The radial part of a scalar field φ is decomposed on a set of
orthonormal polynomials (here Chebyshev);
The angular part is decomposed on a set of spherical harmonics
Y m

` (θ, ϕ), which are eigenvectors of the angular part of the
Laplace operator

∆θϕY m
` = −`(` + 1)Y m

`

∆φ = σ

0@ ∂2

∂r2
+

2

r

∂

∂r
−

`(` + 1)

r2

1A φ`m(r) = σ`m(r)

Accuracy on the solution ∼ 10−13

(exponential decay)

�φ = σ

241 −
δt2

2

0@ ∂2

∂r2
+

2

r

∂

∂r
−

`(` + 1)

r2

1A35 φ
J+1
`m = σ

J
`m

Accuracy on the solution ∼ 10−10

(time-differencing)

∀(`,m) the operator inversion ⇐⇒ inversion of a ∼ 30× 30 matrix
Non-linear parts are evaluated in the physical space and contribute as
sources to the equations.
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Vector spherical harmonics
Following e.g. Thorne (1980)

A 3D vector field V can be decomposed onto a set of vector
spherical harmonics

V =
∑
`,m

R`m(r)Y R
`m(θ, ϕ) + E`m(r)Y E

`m(θ, ϕ) + B`m(r)Y B
`m(θ, ϕ),

pure spin vector harmonics,

orthonormal set of regular
angular functions,

not eigenfunctions of vector
angular Laplacian

Y R
`m ∝ Y`mr, (longitudinal)

Y E
`m ∝ DY`m, (transverse)

Y B
`m ∝ r ×DY`m (transverse)

V r =
∑
`,m

R`m(r)Y`m(θ, ϕ), and we define two other potentials

V θ =
∂η

∂θ
− 1

sin θ

∂µ

∂ϕ
,

V ϕ =
1

sin θ

∂η

∂ϕ
+

∂µ

∂θ
;

η(r, θ, ϕ) =
∑
`,m

E`m(r)Y`m,

µ(r, θ, ϕ) =
∑
`,m

B`m(r)Y`m
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angular functions,

not eigenfunctions of vector
angular Laplacian

Y R
`m ∝ Y`mr, (longitudinal)

Y E
`m ∝ DY`m, (transverse)

Y B
`m ∝ r ×DY`m (transverse)

V r =
∑
`,m

R`m(r)Y`m(θ, ϕ), and we define two other potentials

V θ =
∂η

∂θ
− 1

sin θ

∂µ

∂ϕ
,

V ϕ =
1

sin θ

∂η

∂ϕ
+

∂µ

∂θ
;

η(r, θ, ϕ) =
∑
`,m

E`m(r)Y`m,

µ(r, θ, ϕ) =
∑
`,m

B`m(r)Y`m
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Differential operators in terms of new
potentials

Flat wave operator �V i = Si (divergence-free case)

−∂2V r

∂t2
+ ∆V r +

2

r

∂V r

∂r
+

2V r

r2
= Sr,

−∂2η

∂t2
+ ∆η +

2

r

∂V r

∂r
= ηS ,

−∂2µ

∂t2
+ ∆µ = µS .

Divergence-free condition DiV
i = 0

∂V r

∂r
+

2V r

r
+

1

r
∆θϕη = 0

... thus µ does not depend on the divergence of V .
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Helmholtz decomposition

Any vector field V on R3, twice continuously differentiable and with
rapid enough decay at infinity can be uniquely written as

V = Ṽ + Dφ, with DiṼ
i = 0.

from D × V = D × Ṽ , one gets

µV = µṼ (twice: r- and η- components) ,

∂ηV

∂r
+

ηV

r
− V r

r
=

∂ηṼ

∂r
+

ηṼ

r
− Ṽ r

r
(µ- component) .

⇒the quantities

A =
∂η

∂r
+

η

r
− V r

r

and µ are not sensitive to the gradient part of a vector.
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− Ṽ r

r
(µ- component) .

⇒the quantities

A =
∂η

∂r
+

η

r
− V r

r

and µ are not sensitive to the gradient part of a vector.



Tensor Wave
Equation
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Evolution equations
ensuring divergence-free condition...

From the definition of A and the expression of the wave operator for
a vector, one gets for the source (�V i = Si)

AS =
∂ηS

∂r
+

ηS

r
− Sr

r
,

and

�A(V ) = AS

once A is known, one can reconstruct the vector V i from

∂η

∂r
+

η

r
− V r

r
= AV ,

∂V r

∂r
+

2V r

r
+

1

r
∆θϕη = 0 divergence-free condition.

and µ (since �µ = µS).
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Jérôme Novak

Introduction

Constrained
evolution

Evolution
Equation

Numerical
Methods

Vector Evolution

Spherical
Harmonics

PDEs

Time Evolution

Tensor Evolution

Method

Results

Summary

Integration procedure

1 from Si compute AS and µS ,

2 solve the equation for µ,

3 solve the equation for A,

4 solve the coupled system given by the divergence-free condition
and the definition of A to get V r and η,

5 reconstruct V i from V r, η and µ.
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Jérôme Novak

Introduction

Constrained
evolution

Evolution
Equation

Numerical
Methods

Vector Evolution

Spherical
Harmonics

PDEs

Time Evolution

Tensor Evolution

Method

Results

Summary

Integration procedure

1 from Si compute AS and µS ,

2 solve the equation for µ,

3 solve the equation for A,

4 solve the coupled system given by the divergence-free condition
and the definition of A to get V r and η,

5 reconstruct V i from V r, η and µ.



Tensor Wave
Equation
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Tensor spherical harmonics

A 3D symmetric tensor field h can be decomposed onto a set of
tensor pure spin spherical harmonics and one can get 6 scalar
potentials to represent the tensor:

T L0 T T0 T E1 T B1 T E2 T B2

hrr τ = hθθ + hϕϕ η µ W X

with the following relations:

hrθ =
∂η

∂θ
− 1

sin θ

∂µ

∂ϕ
,

hrϕ =
1

sin θ

∂η

∂ϕ
+

∂µ

∂θ
,

hθθ − hϕϕ

2
=

∂2W

∂θ2
− 1

tan θ

∂W

∂θ
− 1

sin2 θ

∂2W

∂ϕ2
− 2

∂

∂θ

(
1

sin θ

∂X

∂ϕ

)
,

hθϕ =
∂2X

∂θ2
− 1

tan θ

∂X

∂θ
− 1

sin2 θ

∂2X

∂ϕ2
+ 2

∂

∂θ

(
1

sin θ

∂W

∂ϕ

)
.
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Jérôme Novak

Introduction

Constrained
evolution

Evolution
Equation

Numerical
Methods

Vector Evolution

Spherical
Harmonics

PDEs

Time Evolution

Tensor Evolution

Method

Results

Summary

Differential operators

Divergence-free condition Hi = Djh
ij = 0

Hr =
∂hrr

∂r
+

2hrr

r
+

1

r
∆θϕη − τ

r
= 0,

Hη =
∂η

∂r
+

3η

r
+ (∆θϕ + 2)

W

r
+

τ

2r
= 0,

Hµ =
∂µ

∂r
+

3µ

r
+ (∆θϕ + 2) X = 0;

“electric type” potentials

hrr, τ, η, W

“magnetic type”

µ,X

⇒two groups of coupled equations for the wave operator.
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Divergence-free part of a symmetric
tensor

As for the Helmholtz decomposition:

hij = h̃ij +DiV j +DjV i

... but no possibility to use the curl operator on a symmetric tensor!

3 degrees of freedom for h̃

A =
∂X

∂r
− µ

r
,

B =
∂W

∂r
− 1

2r
∆θϕW − η

r
+

τ

4r
,

C =
∂τ

∂r
− 2hrr

r
− 2∆θϕ

(
∂W

∂r
+

W

r

)
.

Wave equation
�hij = Sij

�A = AS ,

�B +
C

2r2
= BS ,

�C − 2C

r2
− 8∆θϕB

r2
= CS .
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Divergence-free evolution

Define ` by `

B̃`m = 2B`m +
C`m

2(` + 1)
,

C̃`m = 2B`m −
C`m

2`
;

Wave equation �hij = Sij

�B̃ +
2`B̃

r2
= B̃S ,

�C̃ − 2(` + 1)C̃

r2
= C̃S .

In the case where fijh
ij = h is given (hrr = h− τ):

1 compute AS and B̃S ,
2 solve wave equations for A and B̃ (a wave operator shifted in `),
3 solve the system composed of

definition of A

Hµ = 0 (Dirac gauge)

on the one hand, and

definition of B̃

Hr = 0

Hη = 0

on the other hand,
4 recover the tensor components.



Tensor Wave
Equation
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Divergence-free evolution

Define ` by `

B̃`m = 2B`m +
C`m

2(` + 1)
,

C̃`m = 2B`m −
C`m

2`
;

Wave equation �hij = Sij

�B̃ +
2`B̃

r2
= B̃S ,

�C̃ − 2(` + 1)C̃

r2
= C̃S .

In the case where fijh
ij = h is given (hrr = h− τ):

1 compute AS and B̃S ,
2 solve wave equations for A and B̃ (a wave operator shifted in `),
3 solve the system composed of

definition of A

Hµ = 0 (Dirac gauge)

on the one hand, and

definition of B̃

Hr = 0

Hη = 0

on the other hand,
4 recover the tensor components.
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Numerical Tests
Is the wave equation solved?

0 5 10 15 20
Time

1e-05

0,0001

0,001

0,01

A
cc

ur
ac

y 
(L

0 n
or

m
)

dt = 0.02
dt = 0.01
dt = 0.005
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Djh

ij = 0 and
det f ij + hij = 1
dt = 0.02, R = 20.
4 domains with 33
points in each.

Initial data: Gaussian profile for hrr and µ,
with ` = 2 and ` = 3 modes.

Evolution compared to the method of
Bonazzola et al. (2004)
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Numerical Tests
Is the solution divergence-free?
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Summary and outlook

Algorithm to solve the tensor wave equation, ensuring the
divergence-free condition,

For a given value of the trace, solve only for two scalar wave
equations,

Designed for spectral methods in spherical coordinates (gain in
CPU).

Test it with the full Einstein equations,

Take into account the full linear operator (with the “shift
advection”),

Evolution of one black hole,

Extension to bi-spherical coordinates (Ansorg 2005)...
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Jérôme Novak

Appendix

References

Inversion
formulas

Inversion formulas

∆θϕη =

(
∂hrθ

∂θ
+

hrθ

tan θ
+

1

sin θ

∂hrϕ

∂ϕ

)
∆θϕµ =

(
∂hrϕ

∂θ
+

hrϕ

tan θ
− 1

sin θ

∂hrθ

∂ϕ

)
,

∆θϕ (∆θϕ + 2) W =
∂2P

∂θ2
+

3

tan θ

∂P

∂θ
− 1

sin2 θ

∂2P

∂ϕ2
− 2P

+
2

sin θ

∂

∂ϕ

(
∂hθϕ

∂θ
+

hθϕ

tan θ

)
,

∆θϕ (∆θϕ + 2) X =
∂2hθϕ

∂θ2
+

3

tan θ

∂hθϕ

∂θ
− 1

sin2 θ

∂2hθϕ

∂ϕ2
− 2hθϕ

− 2

sin θ

∂

∂ϕ

(
∂P

∂θ
+

P

tan θ

)
.
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