High order methods for non linear PDE:

Spectral element and reduced basis methods

Y. Maday ${ }^{1}$

${ }^{1}$ Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie, Paris, France and Brown Univ.

From geometry to numerics

Outline

(1) Motivation

- Framework of the approach
- Parameter dependent problems
- An example
- Application to fluid flows

Framework of the approach.

Basics on approximation

- A lot of problems we have to face in numerical analysis and scientific computing: find u such that

$$
\begin{equation*}
\mathcal{F}(u)=0 \tag{1}
\end{equation*}
$$

can actually be written under a variational form : find $u \in \mathcal{X}$ such that

$$
\begin{equation*}
\mathcal{A}(u, v)=<f, v>, \quad \forall v \in \tilde{\mathcal{X}} \tag{2}
\end{equation*}
$$

Where \mathcal{X} and $\tilde{\mathcal{X}}$ are some coherent Banach spaces, \mathcal{A} is an appropriate form, linear in v, and f is a given linear form. For time dependent problem one may specify even : find $u, \forall t, u(t, ;) \in \mathcal{X}$ such that

(2')

Framework of the approach.

Basics on approximation

- A lot of problems we have to face in numerical analysis and scientific computing: find u such that

$$
\begin{equation*}
\mathcal{F}(u)=0 \tag{1}
\end{equation*}
$$

can actually be written under a variational form : find $u \in \mathcal{X}$ such that

$$
\begin{equation*}
\mathcal{A}(u, v)=<f, v>, \quad \forall v \in \tilde{\mathcal{X}} \tag{2}
\end{equation*}
$$

> Where \mathcal{X} and $\tilde{\mathcal{X}}$ are some coherent Banach spaces, \mathcal{A} is an appropriate form, linear in v, and f is a given linear form. For time dependent problem one may specify even : find $u, \forall t, u(t, ;) \in \mathcal{X}$ such that

Framework of the approach.

Basics on approximation

- A lot of problems we have to face in numerical analysis and scientific computing: find u such that

$$
\begin{equation*}
\mathcal{F}(u)=0 \tag{1}
\end{equation*}
$$

can actually be written under a variational form : find $u \in \mathcal{X}$ such that

$$
\begin{equation*}
\mathcal{A}(u, v)=<f, v>, \quad \forall v \in \tilde{\mathcal{X}} \tag{2}
\end{equation*}
$$

Where \mathcal{X} and $\tilde{\mathcal{X}}$ are some coherent Banach spaces, \mathcal{A} is an appropriate form, linear in v, and f is a given linear form. For time dependent problem one may specify even : find
$u, \forall t, u(t, i) \in \mathcal{X}$ such that

Framework of the approach.

Basics on approximation

- A lot of problems we have to face in numerical analysis and scientific computing: find u such that

$$
\begin{equation*}
\mathcal{F}(u)=0 \tag{1}
\end{equation*}
$$

can actually be written under a variational form : find $u \in \mathcal{X}$ such that

$$
\begin{equation*}
\mathcal{A}(u, v)=<f, v>, \quad \forall v \in \tilde{\mathcal{X}} \tag{2}
\end{equation*}
$$

Where \mathcal{X} and $\tilde{\mathcal{X}}$ are some coherent Banach spaces, \mathcal{A} is an appropriate form, linear in v, and f is a given linear form. For time dependent problem one may specify even : find $u, \forall t, u(t, ;) \in \mathcal{X}$ such that

$$
m\left(\frac{\partial u}{\partial t}, v\right)+\mathcal{A}(u, v)=<f, v>, \quad \forall v \in \tilde{\mathcal{X}}
$$

Framework of the approach.

Basics on approximation

The coherence in \mathcal{X} and $\tilde{\mathcal{X}}$ is expressed through a condition in terms of \mathcal{A} that, for linear problems, involves, e.g.

- the Lax Milgram theorem (then $\mathcal{X}=\tilde{\mathcal{X}}$) or
- the Babuška-Brezzi condition.....
that makes explicit conditions under which the problem is well posed i.e. there exists a unique solution u to problem (1).

For nonlinear problems the conditions are various and more involved.

Framework of the approach.

Basics on approximation

The coherence in \mathcal{X} and $\tilde{\mathcal{X}}$ is expressed through a condition in terms of \mathcal{A} that, for linear problems, involves, e.g.

- the Lax Milgram theorem (then $\mathcal{X}=\tilde{\mathcal{X}}$) or
- the Babuška-Brezzi condition.....
that makes explicit conditions under which the problem is well posed i.e. there exists a unique solution u to problem (1).

For nonlinear problems the conditions are various and more involved.

Framework of the approach.

Basics on approximation

The coherence in \mathcal{X} and $\tilde{\mathcal{X}}$ is expressed through a condition in terms of \mathcal{A} that, for linear problems, involves, e.g.

- the Lax Milgram theorem (then $\mathcal{X}=\tilde{\mathcal{X}}$) or
- the Babuška-Brezzi condition.....
that makes explicit conditions under which the problem is well posed i.e. there exists a unique solution u to problem (1)

For nonlinear problems the conditions are various and more involved.

Framework of the approach.

Basics on approximation

The coherence in \mathcal{X} and $\tilde{\mathcal{X}}$ is expressed through a condition in terms of \mathcal{A} that, for linear problems, involves, e.g.

- the Lax Milgram theorem (then $\mathcal{X}=\tilde{\mathcal{X}}$) or
- the Babuška-Brezzi condition.....
that makes explicit conditions under which the problem is well posed
i.e. there exists a unique solution u to problem (1).

For nonlinear problems the conditions are various and more involved.

Framework of the approach.

Basics on approximation

The coherence in \mathcal{X} and $\tilde{\mathcal{X}}$ is expressed through a condition in terms of \mathcal{A} that, for linear problems, involves, e.g.

- the Lax Milgram theorem (then $\mathcal{X}=\tilde{\mathcal{X}}$) or
- the Babuška-Brezzi condition.....
that makes explicit conditions under which the problem is well posed : i.e. there exists a unique solution u to problem (1).

For nonlinear problems the conditions are various and more involved.

Framework of the approach.

Basics on approximation

The coherence in \mathcal{X} and $\tilde{\mathcal{X}}$ is expressed through a condition in terms of \mathcal{A} that, for linear problems, involves, e.g.

- the Lax Milgram theorem (then $\mathcal{X}=\tilde{\mathcal{X}}$) or
- the Babuška-Brezzi condition.....
that makes explicit conditions under which the problem is well posed : i.e. there exists a unique solution u to problem (1).

For nonlinear problems the conditions are various and more involved.

Framework of the approach.

Basics on approximation

The approximation can now proceed. Two families of finite dimensional spaces $\left\{\mathcal{X}_{n}\right\}_{n}$ and $\left\{\tilde{\mathcal{X}}_{n}\right\}_{n}$ are provided, that maintain the above mentioned coherence.
and the discrete space reads : find $u_{n} \in \mathcal{X}_{n}$ such that

$$
\mathcal{A}\left(u_{n}, v_{n}\right)=<f, v_{n}>, \quad \forall v_{n} \in \tilde{\mathcal{X}}_{n}
$$

or again for time dependent problems : find $u_{n}, \forall t, u_{n}(t, ;) \in \mathcal{X}_{n}$ such that

most often further numerical quadratures are involved leading to slightly modified discrete problems

Framework of the approach.

Basics on approximation

The approximation can now proceed. Two families of finite dimensional spaces $\left\{\mathcal{X}_{n}\right\}_{n}$ and $\left\{\tilde{\mathcal{X}}_{n}\right\}_{n}$ are provided, that maintain the above mentioned coherence. and the discrete space reads : find $u_{n} \in \mathcal{X}_{n}$ such that

$$
\begin{equation*}
\mathcal{A}\left(u_{n}, v_{n}\right)=<f_{n}, v_{n}>, \quad \forall v_{n} \in \tilde{\mathcal{X}}_{n} \tag{n}
\end{equation*}
$$

or again for time dependent problems : find $u_{n}, \forall t, u_{n}(t, ;) \in \mathcal{X}_{n}$ such that

most often further numerical quadratures are involved leading to slightly modified discrete problems

Framework of the approach.

Basics on approximation

The approximation can now proceed. Two families of finite dimensional spaces $\left\{\mathcal{X}_{n}\right\}_{n}$ and $\left\{\tilde{\mathcal{X}}_{n}\right\}_{n}$ are provided, that maintain the above mentioned coherence.
and the discrete space reads : find $u_{n} \in \mathcal{X}_{n}$ such that

$$
\begin{equation*}
\mathcal{A}\left(u_{n}, v_{n}\right)=<f_{n}, v_{n}>, \quad \forall v_{n} \in \tilde{\mathcal{X}}_{n} \tag{n}
\end{equation*}
$$

or again for time dependent problems : find $u_{n}, \forall t, u_{n}(t, ;) \in \mathcal{X}_{n}$ such that

$$
\begin{equation*}
m\left(\frac{\partial u_{n}}{\partial t}, v_{n}\right)+\mathcal{A}\left(u_{n}, v_{n}\right)=<f_{n}, v_{n}>, \quad \forall v_{n} \in \tilde{\mathcal{X}}_{n} \tag{n}
\end{equation*}
$$

most often further numerical quadratures are involved leading to slightly modified discrete problems

Framework of the approach.

Basics on approximation

The approximation can now proceed. Two families of finite dimensional spaces $\left\{\mathcal{X}_{n}\right\}_{n}$ and $\left\{\tilde{\mathcal{X}}_{n}\right\}_{n}$ are provided, that maintain the above mentioned coherence.
and the discrete space reads : find $u_{n} \in \mathcal{X}_{n}$ such that

$$
\begin{equation*}
\mathcal{A}\left(u_{n}, v_{n}\right)=<f_{n}, v_{n}>, \quad \forall v_{n} \in \tilde{\mathcal{X}}_{n} \tag{n}
\end{equation*}
$$

or again for time dependent problems : find $u_{n}, \forall t, u_{n}(t, ;) \in \mathcal{X}_{n}$ such that

$$
\begin{equation*}
m\left(\frac{\partial u_{n}}{\partial t}, v_{n}\right)+\mathcal{A}\left(u_{n}, v_{n}\right)=<f_{n}, v_{n}>, \quad \forall v_{n} \in \tilde{\mathcal{X}}_{n} \tag{n}
\end{equation*}
$$

most often further numerical quadratures are involved leading to slightly modified discrete problems

Framework of the approach.

Basics on approximation

The approximation can now proceed. Two families of finite dimensional spaces $\left\{\mathcal{X}_{n}\right\}_{n}$ and $\left\{\tilde{\mathcal{X}}_{n}\right\}_{n}$ are provided, that maintain the above mentioned coherence.
and the discrete space reads : find $u_{n} \in \mathcal{X}_{n}$ such that

$$
\begin{equation*}
\mathcal{A}_{n}\left(u_{n}, v_{n}\right)=<f_{n}, v_{n}>, \quad \forall v_{n} \in \tilde{\mathcal{X}}_{n} \tag{n}
\end{equation*}
$$

or again for time dependent problems : find $u_{n}, \forall t, u_{n}(t, ;) \in \mathcal{X}_{n}$ such that

$$
\begin{equation*}
m_{n}\left(\frac{\partial u_{n}}{\partial t}, v_{n}\right)+\mathcal{A}_{n}\left(u_{n}, v_{n}\right)=<f_{n}, v_{n}>, \quad \forall v_{n} \in \tilde{\mathcal{X}}_{n} \tag{n}
\end{equation*}
$$

most often further numerical quadratures are involved leading to slightly modified discrete problems

Framework of the approach.

Basics on approximation

All the art of the numerical analyst or the specialist of scientific computing tends to define the discrete spaces \mathcal{X}_{n} and $\tilde{\mathcal{X}}_{n} \ldots$ and also $\mathcal{A}_{n} \ldots$ in such a way that

- The discrete solutions u_{n} exist and are unique
- An error bound $\left\|u-u_{N}\right\|_{\mathcal{X}} \leq c \inf _{w_{n} \in \mathcal{X}_{n}}\left\|u-w_{N}\right\|_{\mathcal{X}}$ can be derived
- The best fit, $\inf _{w_{n} \in \mathcal{X}_{n}}\left\|u-w_{N}\right\|_{\mathcal{X}}$, goes to zero rapidly
- The effective computation of u_{n} is easy enough
- An a posteriori error providing the size of $\left\|u-u_{N}\right\|_{\mathcal{X}}$ is available
- An a posteriori indicator telling what to do to improve $\left\|u-u_{N}\right\|_{\mathcal{X}}$ is available

Framework of the approach.

Basics on approximation

All the art of the numerical analyst or the specialist of scientific computing tends to define the discrete spaces \mathcal{X}_{n} and $\tilde{\mathcal{X}}_{n} \ldots$ and also $\mathcal{A}_{n} \ldots$ in such a way that

- The discrete solutions u_{n} exist and are unique
- An error bound $\left\|u-u_{N}\right\|_{\mathcal{X}} \leq \operatorname{cinf}_{w_{n} \in \mathcal{X}_{n}}\left\|u-w_{N}\right\|_{\mathcal{X}}$ can be derived
- The best fit, $\inf _{w_{n} \in \mathcal{X}_{n}}\left\|u-w_{N}\right\|_{\mathcal{X}}$, goes to zero rapidly
- The effective computation of u_{n} is easy enough
- An a posteriori error providing the size of $\left\|u-u_{N}\right\|_{\mathcal{X}}$ is available
- An a posteriori indicator telling what to do to improve $\left\|u-u_{N}\right\|_{\mathcal{X}}$ is available

Framework of the approach.

Basics on approximation

All the art of the numerical analyst or the specialist of scientific computing tends to define the discrete spaces \mathcal{X}_{n} and $\tilde{\mathcal{X}}_{n} \ldots$ and also $\mathcal{A}_{n} \ldots$ in such a way that

- The discrete solutions u_{n} exist and are unique
- An error bound $\left\|u-u_{N}\right\|_{\mathcal{X}} \leq c \inf _{w_{n} \in \mathcal{X}_{n}}\left\|u-w_{N}\right\|_{\mathcal{X}}$ can be derived
- The best fit, inf $w_{w_{n} \in \mathcal{X}_{n}}\left\|u-w_{N}\right\| \mathcal{X}$, goes to zero rapidly
- The effective computation of u_{n} is easy enough
- An a posteriori error providing the size of $\left\|u-u_{N}\right\|_{\chi}$ is available
- An a posteriori indicator telling what to do to improve $\left\|u-u_{N}\right\| \mathcal{x}$ is available

Framework of the approach.

Basics on approximation

All the art of the numerical analyst or the specialist of scientific computing tends to define the discrete spaces \mathcal{X}_{n} and $\tilde{\mathcal{X}}_{n} \ldots$ and also $\mathcal{A}_{n} \ldots$ in such a way that

- The discrete solutions u_{n} exist and are unique
- An error bound $\left\|u-u_{N}\right\|_{\mathcal{X}} \leq \inf _{w_{n} \in \mathcal{X}_{n}}\left\|u-w_{N}\right\|_{\mathcal{X}}$ can be derived
- The best fit, $\inf _{w_{n} \in \mathcal{X}_{n}}\left\|u-w_{N}\right\|_{\mathcal{X}}$, goes to zero rapidly
- The effective computation of u_{n} is easy enough
- An a posteriori error providing the size of $\left\|u-u_{N}\right\|_{\mathcal{X}}$ is available
- An a posteriori indicator telling what to do to improve $\left\|u-u_{N}\right\|_{\mathcal{X}}$ is available

Framework of the approach.

Basics on approximation

All the art of the numerical analyst or the specialist of scientific computing tends to define the discrete spaces \mathcal{X}_{n} and $\tilde{\mathcal{X}}_{n} \ldots$ and also $\mathcal{A}_{n} \ldots$ in such a way that

- The discrete solutions u_{n} exist and are unique
- An error bound $\left\|u-u_{N}\right\|_{\mathcal{X}} \leq \inf _{w_{n} \in \mathcal{X}_{n}}\left\|u-w_{N}\right\|_{\mathcal{X}}$ can be derived
- The best fit, $\inf _{w_{n} \in \mathcal{X}_{n}}\left\|u-w_{N}\right\|_{\mathcal{X}}$, goes to zero rapidly
- The effective computation of u_{n} is easy enough
- An a posteriori error providing the size of $\left\|u-u_{N}\right\|_{\mathcal{X}}$ is available
- An a posteriori indicator telling what to do to improve $\left\|u-u_{N}\right\|_{\mathcal{X}}$ is
available

Framework of the approach.

Basics on approximation

All the art of the numerical analyst or the specialist of scientific computing tends to define the discrete spaces \mathcal{X}_{n} and $\tilde{\mathcal{X}}_{n} \ldots$ and also $\mathcal{A}_{n} \ldots$ in such a way that

- The discrete solutions u_{n} exist and are unique
- An error bound $\left\|u-u_{N}\right\|_{\mathcal{X}} \leq c \inf _{w_{n} \in \mathcal{X}_{n}}\left\|u-w_{N}\right\|_{\mathcal{X}}$ can be derived
- The best fit, $\inf _{w_{n} \in \mathcal{X}_{n}}\left\|u-w_{N}\right\|_{\mathcal{X}}$, goes to zero rapidly
- The effective computation of u_{n} is easy enough
- An a posteriori error providing the size of $\left\|u-u_{N}\right\|_{\mathcal{X}}$ is available
- An a posteriori indicator telling what to do to improve $\left\|u-u_{N}\right\| \mathcal{X}$ is available

Framework of the approach.

Basics on approximation

All the art of the numerical analyst or the specialist of scientific computing tends to define the discrete spaces \mathcal{X}_{n} and $\tilde{\mathcal{X}}_{n} \ldots$ and also $\mathcal{A}_{n} \ldots$ in such a way that

- The discrete solutions u_{n} exist and are unique
- An error bound $\left\|u-u_{N}\right\|_{\mathcal{X}} \leq \inf _{w_{n} \in \mathcal{X}_{n}}\left\|u-w_{N}\right\|_{\mathcal{X}}$ can be derived
- The best fit, $\inf _{w_{n} \in \mathcal{X}_{n}}\left\|u-w_{N}\right\|_{\mathcal{X}}$, goes to zero rapidly
- The effective computation of u_{n} is easy enough
- An a posteriori error providing the size of $\left\|u-u_{N}\right\|_{\mathcal{X}}$ is available
- An a posteriori indicator telling what to do to improve $\left\|u-u_{N}\right\|_{\mathcal{X}}$ is available

Framework of the approach.

High order methods

- Spectral and spectral element methods order polynomial expansions
- Nonlinear approximations/ multiresolution analysis
- Reduced basis

Framework of the approach.

High order methods

- Spectral and spectral element methods \mathcal{X}_{n} are based on high order polynomial expansions
- Nonlinear approximations/ multiresolution analysis
- Reduced basis

Framework of the approach.

 High order methods- Spectral and spectral element methods \mathcal{X}_{n} are based on high order polynomial expansions
- Nonlinear approximations/ multiresolution analysis \mathcal{X}_{n} are based on wavelet approximations
- Reduced basis

Framework of the approach.

 High order methods- Spectral and spectral element methods \mathcal{X}_{n} are based on high order polynomial expansions
- Nonlinear approximations/ multiresolution analysis \mathcal{X}_{n} are based on wavelet approximations
- Reduced basis

Framework of the approach.

 High order methods- Spectral and spectral element methods \mathcal{X}_{n} are based on high order polynomial expansions
- Nonlinear approximations/ multiresolution analysis \mathcal{X}_{n} are based on wavelet approximations
- Reduced basis χ_{n} are based on previously computed solutions

Framework of the approach.

 High order methods- Spectral and spectral element methods \mathcal{X}_{n} are based on high order polynomial expansions
- Nonlinear approximations/ multiresolution analysis \mathcal{X}_{n} are based on wavelet approximations
- Reduced basis \mathcal{X}_{n} are based on previously computed solutions

Spectral methods.

in one dimension

- For any integer $N, I \mathbb{P}_{N}$ is the set of all polynomials of degree $\leq N$
- Classical approximation results are known in \mathcal{C}^{0}-norm and reveal infinite order accuracy
- We are interested in Sobolev norms:
$-\inf _{v_{N}}\left\|u-v_{N}\right\|_{H^{1}} \leq c N^{1-r}\|u\|_{H^{r}}$

Spectral methods.
 in one dimension

- For any integer N, \mathbb{P}_{N} is the set of all polynomials of degree $\leq N$ - Classical approximation results are known in \mathcal{C}^{0}-norm and reveal infinite order accuracy
- We are interested in Sobolev norms:
$-\inf _{v_{N}}\left\|u-v_{N}\right\|_{H^{1}} \leq c N^{1-r}\|u\|_{H^{r}}$

Spectral methods.
 in one dimension

- For any integer N, \mathbb{P}_{N} is the set of all polynomials of degree $\leq N$
- Classical approximation results are known in \mathcal{C}^{0}-norm and reveal infinite order accuracy
- We are interested in Sobolev norms:
$-\inf _{v_{N}}\left\|u-v_{N}\right\|_{H^{1}} \leq c N^{1-r}\|u\|_{H^{r}}$

Spectral methods.
 in one dimension

- For any integer N, \mathbb{P}_{N} is the set of all polynomials of degree $\leq N$
- Classical approximation results are known in \mathcal{C}^{0}-norm and reveal infinite order accuracy
- We are interested in Sobolev norms:

Spectral methods.
 in one dimension

- For any integer N, \mathbb{P}_{N} is the set of all polynomials of degree $\leq N$
- Classical approximation results are known in \mathcal{C}^{0}-norm and reveal infinite order accuracy
- We are interested in Sobolev norms:

$$
H^{1}=\left\{v \in L^{2}, \quad v^{\prime} \in L^{2}\right\}
$$

$\bullet \inf _{v_{N}}\left\|u-v_{N}\right\|_{H^{1}} \leq c N^{1-r}\|u\|_{H^{r}}$

Spectral methods.
 in one dimension

- For any integer N, \mathbb{P}_{N} is the set of all polynomials of degree $\leq N$
- Classical approximation results are known in \mathcal{C}^{0}-norm and reveal infinite order accuracy
- We are interested in Sobolev norms:

$$
\begin{gathered}
H^{1}=\left\{v \in L^{2}, \quad v^{\prime} \in L^{2}\right\} \\
H^{r}=\left\{v \in L^{2}, \quad v^{\prime} \in H^{r-1}\right\}
\end{gathered}
$$

$-\inf _{v_{N}}\left\|u-v_{N}\right\|_{H^{1}} \leq c N^{1-r}\|u\|_{H^{r}}$

Spectral methods.
 in one dimension

- For any integer N, \mathbb{P}_{N} is the set of all polynomials of degree $\leq N$
- Classical approximation results are known in \mathcal{C}^{0}-norm and reveal infinite order accuracy
- We are interested in Sobolev norms:

$$
\begin{gathered}
H^{1}=\left\{v \in L^{2}, \quad v^{\prime} \in L^{2}\right\} \\
H^{r}=\left\{v \in L^{2}, \quad v^{\prime} \in H^{r-1}\right\}
\end{gathered}
$$

$\bullet \inf _{v_{N}}\left\|u-v_{N}\right\|_{H^{1}} \leq c N^{1-r}\|u\|_{H^{r}}$

Spectral methods.

in 2 and 3 dimensions

- For any integer $N, \mathbb{I P}_{N}$ is the set of all polynomials of partial degree $\leq N$
- The approximation results can be extended
- $\inf _{v_{N}}\left\|u-v_{N}\right\|_{H^{1}} \leq c N^{1-r}\|u\|_{H^{r}}$

Spectral methods.

in 2 and 3 dimensions

- For any integer N, \mathbb{P}_{N} is the set of all polynomials of partial degree $\leq N$
- The approximation results can be extended
$-\inf _{v_{N}}\left\|u-v_{N}\right\|_{H^{1}} \leq c N^{1-r}\|u\|_{H^{r}}$

Spectral methods.
 in 2 and 3 dimensions

- For any integer N, \mathbb{P}_{N} is the set of all polynomials of partial degree $\leq N$
- The approximation results can be extended

$-\inf _{v_{N}}\left\|u-v_{N}\right\|_{H^{1}} \leq c N^{1-r}\|u\|_{H^{r}}$

Spectral methods.
 in 2 and 3 dimensions

- For any integer N, \mathbb{P}_{N} is the set of all polynomials of partial degree $\leq N$
- The approximation results can be extended

$-\inf _{v_{N}}\left\|u-v_{N}\right\|_{H^{1}} \leq c N^{1-r}\|u\|_{H^{r}}$

Spectral methods.

in 2 and 3 dimensions

- For any integer N, \mathbb{P}_{N} is the set of all polynomials of partial degree $\leq N$
- The approximation results can be extended

$$
H^{1}=\left\{v \in L^{2}, \quad \nabla v \in L^{2}\right\}
$$

$-\inf _{v_{N}}\left\|u-v_{N}\right\|_{H^{1}} \leq c N^{1-r}\|u\|_{H^{r}}$

Spectral methods.
 in 2 and 3 dimensions

- For any integer N, \mathbb{P}_{N} is the set of all polynomials of partial degree $\leq N$
- The approximation results can be extended

$$
\begin{gathered}
H^{1}=\left\{v \in L^{2}, \quad \nabla v \in L^{2}\right\} \\
H^{r}=\left\{v \in L^{2}, \quad \nabla v \in H^{r-1}\right\}
\end{gathered}
$$

$-\inf _{v_{N}}\left\|u-v_{N}\right\|_{H^{1}} \leq c N^{1-r}\|u\|_{H^{r}}$

Spectral methods.

in 2 and 3 dimensions

- For any integer N, \mathbb{P}_{N} is the set of all polynomials of partial degree $\leq N$
- The approximation results can be extended

$$
\begin{gathered}
H^{1}=\left\{v \in L^{2}, \quad \nabla v \in L^{2}\right\} \\
H^{r}=\left\{v \in L^{2}, \quad \nabla v \in H^{r-1}\right\}
\end{gathered}
$$

$\bullet \inf _{v_{N}}\left\|u-v_{N}\right\|_{H^{1}} \leq c N^{1-r}\|u\|_{H^{r}}$

Spectral methods.

Definition of the problem

- Consider the Navier Stokes problem
- Find u and p such that

$$
\operatorname{div}(\mathbf{u})=0
$$

- Variational formulation
- the spectral approximation : find \mathbf{u}_{N} and p_{N} such that

Spectral methods.

Definition of the problem

- Consider the Navier Stokes problem
- Find \mathbf{u} and p such that

$$
\begin{gathered}
\frac{\partial \mathbf{u}}{\partial t}-\nu \Delta \mathbf{u}+\mathbf{u} \nabla \mathbf{u}+\nabla p=\mathbf{f} \\
\operatorname{div}(\mathbf{u})=0
\end{gathered}
$$

- Variational formulation
- the spectral approximation : find \mathbf{u}_{N} and p_{N} such that

Spectral methods.
 Definition of the problem

- Consider the Navier Stokes problem
- Find \mathbf{u} and p such that

$$
\begin{gathered}
\frac{\partial \mathbf{u}}{\partial t}-\nu \Delta \mathbf{u}+\mathbf{u} \nabla \mathbf{u}+\nabla p=\mathbf{f} \\
\operatorname{div}(\mathbf{u})=0
\end{gathered}
$$

- Variational formulation

- the spectral approximation : find \mathbf{u}_{N} and p_{N} such that

Spectral methods.

Definition of the problem

- Consider the Navier Stokes problem
- Find \mathbf{u} and p such that

$$
\begin{gathered}
\frac{\partial \mathbf{u}}{\partial t}-\nu \Delta \mathbf{u}+\mathbf{u} \nabla \mathbf{u}+\nabla p=\mathbf{f} \\
\operatorname{div}(\mathbf{u})=0
\end{gathered}
$$

- Variational formulation

$$
\int_{\Omega} \frac{\partial \mathbf{u}}{\partial t} \mathbf{v}+\int_{\Omega} \nabla \mathbf{u} \nabla \mathbf{v}+\int_{\Omega} \mathbf{u} \nabla \mathbf{u} \mathbf{v}-\int_{\Omega} p \operatorname{div}(\mathbf{v})=\int_{\Omega} \mathbf{f v}
$$

- the spectral approximation : find \mathbf{u}_{N} and p_{N} such that

Spectral methods.
 Definition of the problem

- Consider the Navier Stokes problem
- Find \mathbf{u} and p such that

$$
\begin{gathered}
\frac{\partial \mathbf{u}}{\partial t}-\nu \Delta \mathbf{u}+\mathbf{u} \nabla \mathbf{u}+\nabla p=\mathbf{f} \\
\operatorname{div}(\mathbf{u})=0
\end{gathered}
$$

- Variational formulation

$$
\int_{\Omega} \frac{\partial \mathbf{u}}{\partial t} \mathbf{v}+\int_{\Omega} \nabla \mathbf{u} \nabla \mathbf{v}+\int_{\Omega} \mathbf{u} \nabla \mathbf{u v}-\int_{\Omega} p \operatorname{div}(\mathbf{v})=\int_{\Omega} \mathbf{f v}
$$

- the spectral approximation : find \mathbf{u}_{N} and p_{N} such that

Spectral methods.
 Definition of the problem

- Consider the Navier Stokes problem
- Find \mathbf{u} and p such that

$$
\begin{gathered}
\frac{\partial \mathbf{u}}{\partial t}-\nu \Delta \mathbf{u}+\mathbf{u} \nabla \mathbf{u}+\nabla p=\mathbf{f} \\
\operatorname{div}(\mathbf{u})=0
\end{gathered}
$$

- Variational formulation

$$
\int_{\Omega} \frac{\partial \mathbf{u}}{\partial t} \mathbf{v}+\int_{\Omega} \nabla \mathbf{u} \nabla \mathbf{v}+\int_{\Omega} \mathbf{u} \nabla \mathbf{u} \mathbf{v}-\int_{\Omega} p \operatorname{div}(\mathbf{v})=\int_{\Omega} \mathbf{f v}
$$

- the spectral approximation: find \mathbf{u}_{N} and p_{N} such that

$$
\int_{\Omega} \frac{\partial \mathbf{u}_{N}}{\partial t} \mathbf{v}_{N}+\int_{\Omega} \nabla \mathbf{u}_{N} \nabla \mathbf{v}_{N}+\int_{\Omega} \mathbf{u}_{N} \nabla \mathbf{u}_{N} \mathbf{v}_{N}-\int_{\Omega} p_{N} \operatorname{div}\left(\mathbf{v}_{N}\right)=\int_{\Omega} \mathbf{f} \mathbf{v}_{N}
$$

Spectral methods.

Coherent spaces

$$
\int_{\Omega} \frac{\partial \mathbf{u}_{N}}{\partial t} \mathbf{v}_{N}+\int_{\Omega} \nabla \mathbf{u}_{N} \nabla \mathbf{v}_{N}+\int_{\Omega} \mathbf{u}_{N} \nabla \mathbf{u}_{N} \mathbf{v}_{N}-\int_{\Omega} p_{N} \operatorname{div}\left(\mathbf{v}_{N}\right)=\int_{\Omega} \mathbf{f} \mathbf{v}_{N}
$$

the degrees of \mathbf{u}_{N} and p_{N} cannot be the same.... spurious pressure modes
 degree of $\mathrm{u}_{N}=N$ (idem for v_{N}) and degree of $p_{N}=N-2$ (idem for q_{N}) leads to a unique solution

Spectral methods.

Coherent spaces

$$
\int_{\Omega} \frac{\partial \mathbf{u}_{N}}{\partial t} \mathbf{v}_{N}+\int_{\Omega} \nabla \mathbf{u}_{N} \nabla \mathbf{v}_{N}+\int_{\Omega} \mathbf{u}_{N} \nabla \mathbf{u}_{N} \mathbf{v}_{N}-\int_{\Omega} p_{N} \operatorname{div}\left(\mathbf{v}_{N}\right)=\int_{\Omega} \mathbf{f} \mathbf{v}_{N}
$$

$$
\int_{\Omega} q_{N} \operatorname{div}\left(\mathbf{u}_{N}\right)=0
$$

the degrees of \mathbf{u}_{N} and p_{N} cannot be the same.... spurious pressure modes
 degree of $\mathbf{u}_{N}=N$ (idem for $\left.\mathbf{v}_{N}\right)$ and degree of $p_{N}=N-2$ (idem for q_{N}) leads to a unique solution

Spectral methods.

Coherent spaces

$$
\begin{gathered}
\int_{\Omega} \frac{\partial \mathbf{u}_{N}}{\partial t} \mathbf{v}_{N}+\int_{\Omega} \nabla \mathbf{u}_{N} \nabla \mathbf{v}_{N}+\int_{\Omega} \mathbf{u}_{N} \nabla \mathbf{u}_{N} \mathbf{v}_{N}-\int_{\Omega} p_{N} \operatorname{div}\left(\mathbf{v}_{N}\right)=\int_{\Omega} \mathbf{f} \mathbf{v}_{N} \\
\int_{\Omega} q_{N} \operatorname{div}\left(\mathbf{u}_{N}\right)=0
\end{gathered}
$$

the degrees of \mathbf{u}_{N} and p_{N} cannot be the same.... spurious pressure modes
degree of $\mathbf{u}_{N}=N$ (idem for \mathbf{v}_{N}) and degree of $p_{N}=N-2$ (idem for q_{N}) leads to a unique solution

Spectral methods.

Coherent spaces

$$
\begin{gathered}
\int_{\Omega} \frac{\partial \mathbf{u}_{N}}{\partial t} \mathbf{v}_{N}+\int_{\Omega} \nabla \mathbf{u}_{N} \nabla \mathbf{v}_{N}+\int_{\Omega} \mathbf{u}_{N} \nabla \mathbf{u}_{N} \mathbf{v}_{N}-\int_{\Omega} p_{N} \operatorname{div}\left(\mathbf{v}_{N}\right)=\int_{\Omega} \mathbf{f} \mathbf{v}_{N} \\
\int_{\Omega} q_{N} \operatorname{div}\left(\mathbf{u}_{N}\right)=0
\end{gathered}
$$

the degrees of \mathbf{u}_{N} and p_{N} cannot be the same.... spurious pressure modes
degree of $\mathbf{u}_{N}=N$ (idem for \mathbf{v}_{N}) and degree of $p_{N}=N-2$ (idem for q_{N}) leads to a unique solution

Spectral methods.

Efficient implementation

- The nonlinear contribution $\int_{\Omega} \mathbf{u}_{N} \nabla \mathbf{u}_{N} \mathbf{v}_{N}$ is a problem from the computational point of view
- We need to evaluate these contribution efficiently:
$\int_{\Omega} \mathbf{u}_{N} \nabla \mathbf{u}_{N} \mathbf{v}_{N}$ is evaluated by $\sum_{i, j} \mathbf{u}_{N}\left(\xi_{i j}\right) \nabla \mathbf{u}_{N}\left(\xi_{i j}\right) \mathbf{v}_{N}\left(\xi_{i j}\right) \omega_{i j}$

Spectral methods.

Efficient implementation

- The nonlinear contribution $\int_{\Omega} \mathbf{u}_{N} \nabla \mathbf{u}_{N} \mathbf{v}_{N}$ is a problem from the computational point of view
- We need to evaluate these contribution efficiently: the idea is to make use of a numerical integration that should not destroy the accuracy: Gauss type formula
$\int_{\Omega} \mathbf{U}_{N} \nabla \mathbf{u}_{N} \mathbf{v}_{N}$ is evaluated by $\sum_{i, j} \mathbf{U}_{N}\left(\xi_{i j}\right) \nabla \mathbf{u}_{N}\left(\xi_{i j}\right) \mathbf{v}_{N}\left(\xi_{i j}\right) \omega_{i j}$

Spectral methods.

Efficient implementation

- The nonlinear contribution $\int_{\Omega} \mathbf{u}_{N} \nabla \mathbf{u}_{N} \mathbf{v}_{N}$ is a problem from the computational point of view
- We need to evaluate these contribution efficiently: the idea is to make use of a numerical integration that should not destroy the accuracy: Gauss type formula
$\int_{\Omega} \mathbf{u}_{N} \nabla \mathbf{u}_{N} \mathbf{v}_{N}$ is evaluated by $\sum_{i, j} \mathbf{u}_{N}\left(\xi_{i j}\right) \nabla \mathbf{u}_{N}\left(\xi_{i j}\right) \mathbf{v}_{N}\left(\xi_{i j}\right) \omega_{i j}$

Spectral methods.

Efficient implementation

- The nonlinear contribution $\int_{\Omega} \mathbf{u}_{N} \nabla \mathbf{u}_{N} \mathbf{v}_{N}$ is a problem from the computational point of view
- We need to evaluate these contribution efficiently: the idea is to make use of a numerical integration that should not destroy the accuracy: Gauss type formula
$\int_{\Omega} \mathbf{u}_{N} \nabla \mathbf{u}_{N} \mathbf{v}_{N}$ is evaluated by $\sum_{i, j} \mathbf{u}_{N}\left(\xi_{i j}\right) \nabla \mathbf{u}_{N}\left(\xi_{i j}\right) \mathbf{v}_{N}\left(\xi_{i j}\right) \omega_{i j}$

Spectral methods.

Efficient implementation

- The nonlinear contribution $\int_{\Omega} \mathbf{u}_{N} \nabla \mathbf{u}_{N} \mathbf{v}_{N}$ is a problem from the computational point of view
- We need to evaluate these contribution efficiently: the idea is to make use of a numerical integration that should not destroy the accuracy: Gauss type formula
$\int_{\Omega} \mathbf{u}_{N} \nabla \mathbf{u}_{N} \mathbf{v}_{N}$ is evaluated by $\sum_{i, j} \mathbf{u}_{N}\left(\xi_{i j}\right) \nabla \mathbf{u}_{N}\left(\xi_{i j}\right) \mathbf{v}_{N}\left(\xi_{i j}\right) \omega_{i j}$

Spectral methods.

Extension to curved domains

Figure: The domain of interest is obtained as a regular deformation of the square

Spectral methods.

Domain decomposition

Figure: The domain of interest is decomposed into a union of nonoverlapping deformed squares

Spectral methods.
 Domain decomposition

This non overlapping domain decomposition $\Omega=\cup \Omega^{k}$ allows to write simply the integral over Ω as a sum of integrals over each of the subdomains Ω^{k}.

This way, we do not have to wonder about the matching, only continuity is imposed at the interfaces

Spectral methods.
 Domain decomposition

This non overlapping domain decomposition $\Omega=\cup \Omega^{k}$ allows to write simply the integral over Ω as a sum of integrals over each of the subdomains Ω^{k}.

$$
\sum_{k=1}^{K} \sum_{i, j} \frac{\partial \mathbf{u}_{N}}{\partial t} \mathbf{v}_{N}\left(\xi_{i j}^{k}\right) \omega_{i j}^{k}+\sum_{k=1}^{K} \sum_{i, j} \nabla \mathbf{u}_{N} \mathbf{v}_{N}\left(\xi_{i j}^{k}\right) \omega_{i j}^{k} \ldots
$$

This way, we do not have to wonder about the matching, only continuity is imposed at the interfaces

Spectral methods. Domain decomposition

This non overlapping domain decomposition $\Omega=\cup \Omega^{k}$ allows to write simply the integral over Ω as a sum of integrals over each of the subdomains Ω^{k}.

$$
\sum_{k=1}^{K} \sum_{i, j} \frac{\partial \mathbf{u}_{N}}{\partial t} \mathbf{v}_{N}\left(\xi_{i j}^{k}\right) \omega_{i j}^{k}+\sum_{k=1}^{K} \sum_{i, j} \nabla \mathbf{u}_{N} \mathbf{v}_{N}\left(\xi_{i j}^{k}\right) \omega_{i j}^{k} \ldots
$$

This way, we do not have to wonder about the matching, only continuity is imposed at the interfaces

Spectral methods.

Non matching domain decomposition
This variational formulation + numerical integration + non overlapping DD allows also to be able to use different polynomial degree in each subdomain

Figure: non matching grids treated by the mortar element method, by Y . Capdeville, E. Chaljub, J.P. Vilotte, J.P. Montagner

Spectral methods.

Non regular solutions
If the solution to be approximated is only piecewise regular but globally discontinuous
Spectral approximations lead to furious oscillations.... but a post treatment is possible

Figure: The solution before post processing, from S.M. Kaber

Spectral methods.

Non regular solutions
If the solution to be approximated is only piecewise regular but globally discontinuous
Spectral approximations lead to furious oscillations.... but a post treatment is possible

Fiqure: The solution AFTER the postprocessing, from S.M. Kāber $\overline{\underline{Z}}$

Spectral methods.

Non regular solutions

Figure: , from S.M. Kaber

Spectral methods.

Non regular solutions

Figure: , from S.M. Kaber

Spectral methods.

Non regular solutions

Figure: , from S.M. Kaber

Spectral methods.

Non regular solutions

Figure: , from S.M. Kaber

Spectral methods.

Non regular solutions

Figure: , from S.M. Kaber

Spectral methods.

Non regular solutions

Figure: , from S.M. Kaber

Reduced Basis Methods.

What reduced basis method propose

Here what we want to use is an a priori knowledge of a reduced space X much smaller than \mathcal{X} where the solution to (1) should be sought We present here two classes of problems where this strategy can be used

- parameter dependent problems
- hierarchical geometry for the domain
in both cases the space X is conceived from the use of a more standard approximation methods you do not have to forget your favorite method... it is more the opposite in a first step

Reduced Basis Methods.

What reduced basis method propose

Here what we want to use is an a priori knowledge of a reduced space X much smaller than \mathcal{X} where the solution to (1) should be sought We present here two classes of problems where this strategy can be used

- parameter dependent problems
- hierarchical geometry for the domain
in both cases the space X is conceived from the use of a more standard approximation methods you do not have to forget your favorite method... it is more the opposite in a first step

Reduced Basis Methods.

What reduced basis method propose

Here what we want to use is an a priori knowledge of a reduced space X much smaller than \mathcal{X} where the solution to (1) should be sought We present here two classes of problems where this strategy can be used

- parameter dependent problems
- hierarchical geometry for the domain
in both cases the space X is conceived from the use of a more standard approximation methods you do not have to forget your favorite method... it is more the opposite in a first step

Reduced Basis Methods.

What reduced basis method propose

Here what we want to use is an a priori knowledge of a reduced space X much smaller than \mathcal{X} where the solution to (1) should be sought We present here two classes of problems where this strategy can be used

- parameter dependent problems
- hierarchical geometry for the domain
in both cases the space X is conceived from the use of a more standard approximation methods you do not have to forget your favorite method... it is more the opposite in a first step

Reduced Basis Methods.

What reduced basis method propose

Here what we want to use is an a priori knowledge of a reduced space X much smaller than \mathcal{X} where the solution to (1) should be sought We present here two classes of problems where this strategy can be used

- parameter dependent problems
- hierarchical geometry for the domain
in both cases the space X is conceived from the use of a more standard approximation methods
favorite method... it is more the opposite in a first step

Reduced Basis Methods.

What reduced basis method propose

Here what we want to use is an a priori knowledge of a reduced space X much smaller than \mathcal{X} where the solution to (1) should be sought We present here two classes of problems where this strategy can be used

- parameter dependent problems
- hierarchical geometry for the domain
in both cases the space X is conceived from the use of a more standard approximation methods you do not have to forget your favorite method... it is more the opposite in a first step

Outline

(9) Motivation

- Framework of the approach
- Parameter dependent problems
- An example
- Application to fluid flows

Parameter dependent problems.

Basics

Let us consider a class of problems depending on some parameters:

$$
\mathcal{F}(u, \mu)=0
$$

and the parameter μ belongs to R^{d} (or some brick in R^{d})

- This is the case for instance in a dimensional problem where some parameters have to be optimized for some purpose
- This can equally be the case for an inverse problem in parameter identification.
- The solution $u=u(\mu)$ of $\left(1^{\prime}\right)$ is sought in some space \mathcal{X} for any given parameter μ
- The dependancy in μ of the solution $u(\mu)$ is most often regular.

Parameter dependent problems.

Basics

Let us consider a class of problems depending on some parameters:

$$
\mathcal{F}(u, \mu)=0
$$

and the parameter μ belongs to R^{d} (or some brick in R^{d})

- This is the case for instance in a dimensional problem where some parameters have to be optimized for some purpose
- This can equally be the case for an inverse problem in parameter identification.
- The solution $u=u(\mu)$ of ($\left.1^{\prime}\right)$ is sought in some space \mathcal{X} for any given parameter μ
- The dependancy in μ of the solution $u(\mu)$ is most often regular

Parameter dependent problems.

Basics

Let us consider a class of problems depending on some parameters:

$$
\mathcal{F}(u, \mu)=0
$$

and the parameter μ belongs to R^{d} (or some brick in R^{d})

- This is the case for instance in a dimensional problem where some parameters have to be optimized for some purpose
- This can equally be the case for an inverse problem in parameter identification.
- The solution $u=u(\mu)$ of $\left(1^{\prime}\right)$ is sought in some space \mathcal{X} for any given parameter μ
- The dependancy in μ of the solution $u(\mu)$ is most often regular

Parameter dependent problems.

Basics

Let us consider a class of problems depending on some parameters:

$$
\mathcal{F}(u, \mu)=0
$$

and the parameter μ belongs to R^{d} (or some brick in R^{d})

- This is the case for instance in a dimensional problem where some parameters have to be optimized for some purpose
- This can equally be the case for an inverse problem in parameter identification.
- The solution $u=u(\mu)$ of $\left(1^{\prime}\right)$ is sought in some space \mathcal{X} for any given parameter μ
- The dependancy in μ of the solution $u(\mu)$ is most often regular

Parameter dependent problems.

Basics

Let us consider a class of problems depending on some parameters:

$$
\mathcal{F}(u, \mu)=0
$$

and the parameter μ belongs to R^{d} (or some brick in R^{d})

- This is the case for instance in a dimensional problem where some parameters have to be optimized for some purpose
- This can equally be the case for an inverse problem in parameter identification.
- The solution $u=u(\mu)$ of (1^{\prime}) is sought in some space \mathcal{X} for any given parameter μ

Parameter dependent problems.

Basics

Let us consider a class of problems depending on some parameters:

$$
\mathcal{F}(u, \mu)=0
$$

and the parameter μ belongs to R^{d} (or some brick in R^{d})

- This is the case for instance in a dimensional problem where some parameters have to be optimized for some purpose
- This can equally be the case for an inverse problem in parameter identification.
- The solution $u=u(\mu)$ of (1^{\prime}) is sought in some space \mathcal{X} for any given parameter μ
- The dependancy in μ of the solution $u(\mu)$ is most often regular.

Parameter dependent problems.

The reduced basis space and approximation

- Define $X=\operatorname{Span}\{u(\mu), \mu \in \mathcal{D}\}$ then looking for the solution in X instead of \mathcal{X} (generally a Sobolev space) is already a valuable indication.....
- In order to apprehend in which sense the good behavior of X should be understood, it is helpfull to introduce the notion of n-width following Kolmogorov

Parameter dependent problems.

The reduced basis space and approximation

- Define $X=\operatorname{Span}\{u(\mu), \mu \in \mathcal{D}\}$ then looking for the solution in X instead of \mathcal{X} (generally a Sobolev space) is already a valuable indication.....
- In order to apprehend in which sense the good behavior of X should be understood, it is helpfull to introduce the notion of n-width following Kolmogorov

Parameter dependent problems.

The reduced basis space and approximation

Definition

Let \mathcal{X} be a normed linear space, X be a subset of \mathcal{X} and X_{n} be a generic n-dimensional subspace of \mathcal{X}. The deviation of X from X_{n} is

$$
E\left(X ; X_{n}\right)=\sup _{x \in X} \inf _{y \in X_{n}}\|x-y\| \mathcal{X} .
$$

The Kolmogorov n-width of A in X is given by

$$
\begin{align*}
d_{n}(X, \mathcal{X}) & ={\inf \left\{E\left(X ; X_{n}\right): X_{n} \text { an } n \text {-dimensional subspace of } X\right\}}=\inf _{X_{n} \sup _{x \in X} \inf _{y \in X_{n}}\|X-y\| \mathcal{X} .} .
\end{align*}
$$

The n-width of X thus measures the extent to which X may be approximated by a n-dimensional subspace of \mathcal{X}.

Parameter dependent problems.

The reduced basis space and approximation

Definition

Let \mathcal{X} be a normed linear space, X be a subset of \mathcal{X} and X_{n} be a generic n-dimensional subspace of \mathcal{X}. The deviation of X from X_{n} is

$$
E\left(X ; X_{n}\right)=\sup _{x \in X} \inf _{y \in X_{n}}\|x-y\|_{\mathcal{X}} .
$$

The Kolmogorov n-width of A in X is given by

$$
\begin{align*}
d_{n}(X, \mathcal{X}) & ={\inf \left\{E\left(X ; X_{n}\right): X_{n} \text { an } n \text {-dimensional subspace of } X\right\}}=\inf _{X_{n} \sup _{x \in X} \inf _{y \in X_{n}}\|X-y\| \mathcal{X} .} .
\end{align*}
$$

The n-width of X thus measures the extent to which X may be approximated by a n-dimensional subspace of \mathcal{X}.

Parameter dependent problems.

The reduced basis space and approximation

- Of course X is rarely known but $X_{n}=\operatorname{Span}\left\{u\left(\mu_{k}\right), k=1, \ldots, n\right\}$ where μ_{k} are properly chosen
- The solution to (1^{\prime}) for other values of μ is then approximated through a Galerkin process.
- The best fit approximation is often exponential in n and a random log repartition of the sample values μ_{k} is often better than other obvious choices.
- Galerkin approximation is preferable to any kind of extrapolation method.

Parameter dependent problems.

The reduced basis space and approximation

- Of course X is rarely known but $X_{n}=\operatorname{Span}\left\{u\left(\mu_{k}\right), k=1, \ldots, n\right\}$ where μ_{k} are properly chosen
- The solution to (1^{\prime}) for other values of μ is then approximated through a Galerkin process.
- The best fit approximation is often exponential in n and a random log repartition of the sample values μ_{k} is often better than other obvious choices.
- Galerkin approximation is preferable to any kind of extrapolation method.

Parameter dependent problems.

The reduced basis space and approximation

- Of course X is rarely known but $X_{n}=\operatorname{Span}\left\{u\left(\mu_{k}\right), k=1, \ldots, n\right\}$ where μ_{k} are properly chosen
- The solution to (1 ') for other values of μ is then approximated through a Galerkin process.
- The best fit approximation is often exponential in n and a random log repartition of the sample values μ_{k} is often better than other obvious choices.
- Galerkin approximation is preferable to any kind of extrapolation method.

Parameter dependent problems.

The reduced basis space and approximation

- Of course X is rarely known but $X_{n}=\operatorname{Span}\left\{u\left(\mu_{k}\right), k=1, \ldots, n\right\}$ where μ_{k} are properly chosen
- The solution to (1') for other values of μ is then approximated through a Galerkin process.
- The best fit approximation is often exponential in n and a random log repartition of the sample values μ_{k} is often better than other obvious choices.

- Galerkin approximation is preferable to any kind of extrapolation method

Parameter dependent problems.

The reduced basis space and approximation

- Of course X is rarely known but $X_{n}=\operatorname{Span}\left\{u\left(\mu_{k}\right), k=1, \ldots, n\right\}$ where μ_{k} are properly chosen
- The solution to (1 ') for other values of μ is then approximated through a Galerkin process.
- The best fit approximation is often exponential in n and a random log repartition of the sample values μ_{k} is often better than other obvious choices.

- Galerkin approximation is preferable to any kind of extrapolation method.

Parameter dependent problems.

The reduced basis space and approximation

- Of course X is rarely known but $X_{n}=\operatorname{Span}\left\{u\left(\mu_{k}\right), k=1, \ldots, n\right\}$ where μ_{k} are properly chosen
- The solution to (1') for other values of μ is then approximated through a Galerkin process.
- The best fit approximation is often exponential in n and a random log repartition of the sample values μ_{k} is often better than other obvious choices.
- Almroth B.O., Stern P., Brogan F.A.(1978)
- Noor A.K., Peters J.M.(1980)
- Galerkin approximation is preferable to any kind of extrapolation method.

Parameter dependent problems.

The reduced basis space and approximation

- Of course X is rarely known but $X_{n}=\operatorname{Span}\left\{u\left(\mu_{k}\right), k=1, \ldots, n\right\}$ where μ_{k} are properly chosen
- The solution to (1') for other values of μ is then approximated through a Galerkin process.
- The best fit approximation is often exponential in n and a random log repartition of the sample values μ_{k} is often better than other obvious choices.
- Almroth B.O., Stern P., Brogan F.A.(1978)
- Noor A.K., Peters J.M.(1980)
- Galerkin approximation is preferable to any kind of extrapolation method.

Outline

(1) Motivation

- Framework of the approach
- Parameter dependent problems
- An example
- Application to fluid flows

Application to a non affine elliptic problem

We are interested in solving

$$
-\Delta u+\mu_{1} \frac{e^{\mu_{2} u}-1}{\mu_{2}}=f
$$

the results with the interpolation process are

N	4	8	12	16	20
$\varepsilon_{N, M, \max }^{u}$	$6.53 \mathrm{E}-03$	$1.05 \mathrm{E}-03$	$7.34 \mathrm{E}-05$	$1.30 \mathrm{E}-05$	$5.05 \mathrm{E}-06$
$\eta_{N, M}^{u}$	1.94	2.16	2.33	2.36	1.21

Application to a non affine parabolic problem

We are interested in solving

$$
\frac{\partial u}{\partial t}-\Delta u+\mu_{1} \frac{e^{\mu_{2} u}-1}{\mu_{2}}=f
$$

the reduced basis considers 3 parameters μ_{1}, μ_{2}, t... results are similar

N	1	5	10	20	30
$\varepsilon_{N, M, \max }^{u}$	$3.82 \mathrm{E}-01$	$1.36 \mathrm{E}-02$	$1.62 \mathrm{E}-03$	$1.46 \mathrm{E}-04$	$1.88 \mathrm{E}-05$
$\eta_{N, M}^{u}$	79	25.9	8.65	8.25	3.82

Rapid evaluation of nonlinear contributions

Similarly as for the spectral method $u(\mu)$ approximated by a sum of $u\left(\mu_{i}\right)$:
e.g. $\exp (u)$

- we use the reduced basis $\exp \left(u\left(\mu_{i}\right)\right), \rightarrow W_{N}^{\exp }$
- we select the representative collocation points
- we represent $\exp (u(., \mu))$ by its interpolation over $W_{N}^{\exp }$
i.e. let $u(., \mu)$ be approximated by $\sum_{i} \alpha_{j} u\left(\mu_{j}\right)$, then $\exp (u(., \mu))$ will be approximated by $\sum_{j} \beta_{j} \exp \left(u\left(\mu_{j}\right)\right)$, where the β^{\prime} 's are tuned so that

Rapid evaluation of nonlinear contributions

Similarly as for the spectral method $u(\mu)$ approximated by a sum of $u\left(\mu_{i}\right)$: e.g. $\exp (u)$

- we use the reduced basis $\exp \left(u\left(\mu_{i}\right)\right), \rightarrow W_{N}^{\exp }$
- we select the representative collocation points
- we represent $\exp (u(., \mu))$ by its interpolation over $W_{N}^{\exp }$ i.e. let $u(., \mu)$ be approximated by $\sum_{j} \alpha_{j} u\left(\mu_{j}\right)$, then $\exp (u(. . \mu))$ will be approximated by $\sum_{j} \beta_{j} \exp \left(u\left(\mu_{j}\right)\right)$, where the β^{\prime} 's are tuned so that

Rapid evaluation of nonlinear contributions

Similarly as for the spectral method $u(\mu)$ approximated by a sum of $u\left(\mu_{i}\right)$: e.g. $\exp (u)$

- we use the reduced basis $\exp \left(u\left(\mu_{i}\right)\right), \rightarrow W_{N}^{\exp }$
- we select the representative collocation points
- we represent $\exp (u(., \mu))$ by its interpolation over $W_{N}^{\exp }$ i.e. let $u(., \mu)$ be approximated by $\sum_{j} \alpha_{j} u\left(\mu_{j}\right)$, then $\exp (u(., \mu))$ will be approximated by $\sum_{j} \beta_{j} \exp \left(u\left(\mu_{j}\right)\right)$, where the β 's are tuned so that

Rapid evaluation of nonlinear contributions

Similarly as for the spectral method $u(\mu)$ approximated by a sum of $u\left(\mu_{i}\right)$: e.g. $\exp (u)$

- we use the reduced basis $\exp \left(u\left(\mu_{i}\right)\right), \rightarrow W_{N}^{\exp }$
- we select the representative collocation points
- we represent $\exp (u(., \mu))$ by its interpolation over $W_{N}^{\exp }$ ie let $u(, \mu)$ be approximated by $\sum_{j} \alpha_{j} u\left(\mu_{j}\right)$, then $\exp (u(, \mu))$ will be approximated by $\sum_{j} \beta_{j} \exp \left(u\left(\mu_{j}\right)\right)$, where the β^{\prime} 's are tuned so that

Rapid evaluation of nonlinear contributions

Similarly as for the spectral method $u(\mu)$ approximated by a sum of $u\left(\mu_{i}\right)$: e.g. $\exp (u)$

- we use the reduced basis $\exp \left(u\left(\mu_{i}\right)\right), \rightarrow W_{N}^{\exp }$
- we select the representative collocation points
- we represent $\exp (u(., \mu))$ by its interpolation over $W_{N}^{\exp }$
i.e. let $u(., \mu)$ be approximated by $\sum_{j} \alpha_{j} u\left(\mu_{j}\right)$, then $\exp (u(., \mu))$ will be approximated by $\sum_{j} \beta_{j} \exp \left(u\left(\mu_{j}\right)\right)$, where the β 's are tuned so that

Rapid evaluation of nonlinear contributions

Similarly as for the spectral method $u(\mu)$ approximated by a sum of $u\left(\mu_{i}\right)$: e.g. $\exp (u)$

- we use the reduced basis $\exp \left(u\left(\mu_{i}\right)\right), \rightarrow W_{N}^{\exp }$
- we select the representative collocation points
- we represent $\exp (u(., \mu))$ by its interpolation over $W_{N}^{\exp }$
i.e. let $u(., \mu)$ be approximated by $\sum_{j} \alpha_{j} u\left(\mu_{j}\right)$, then $\exp (u(., \mu))$ will be approximated by $\sum_{j} \beta_{j} \exp \left(u\left(\mu_{j}\right)\right)$, where the β^{\prime} s are tuned so that

$$
\exp \left(\sum_{j} \alpha_{j} u\left(\mu_{j}\right)\right)\left(t_{k}\right)=\sum_{j} \beta_{j} \exp \left(u\left(\mu_{j}\right)\right)
$$

Rapid evaluation of nonlinear contributions

Similarly as for the spectral method $u(\mu)$ approximated by a sum of $u\left(\mu_{i}\right)$: e.g. $\exp (u)$

- we use the reduced basis $\exp \left(u\left(\mu_{i}\right)\right), \rightarrow W_{N}^{\exp }$
- we select the representative collocation points
- we represent $\exp (u(., \mu))$ by its interpolation over $W_{N}^{\exp }$
i.e. let $u(., \mu)$ be approximated by $\sum_{j} \alpha_{j} u\left(\mu_{j}\right)$, then $\exp (u(., \mu))$ will be approximated by $\sum_{j} \beta_{j} \exp \left(u\left(\mu_{j}\right)\right)$, where the β^{\prime} s are tuned so that

$$
\exp \left(\sum_{j} \alpha_{j} u\left(\mu_{j}\right)\right)\left(t_{k}\right)=\sum_{j} \beta_{j} \exp \left(u\left(\mu_{j}\right)\right)\left(t_{k}\right)
$$

Some first results in QC

$$
u(\mu)=\operatorname{Arg} \inf _{\int u^{2}=1} E(u, \mu)
$$

where
$E(u, \mu)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x d y+\int_{\Omega} V(., \mu) u^{2} d x d y+\int_{\Omega} \int_{\Omega} \frac{u^{2}(x) u^{2}(y)}{|x-y|} d x d y$
With the potential

$$
V(x, y, \mu)=\frac{\mu_{2}}{\sqrt{\left(x+\mu_{1} / 2\right)^{2}+y^{2}}}+\frac{\mu_{2}}{\sqrt{\left.\left(x-\mu_{1} / 2\right)^{2}+y^{2}\right)}}
$$

Some first results in QC

Figure: Different distances between the nuclei.

Some first results in QC

Figure: Different distances between the nuclei.

Some first results in QC

Figure: Different distances between the nuclei.

Reduced Basis Formulation for Kohn Sham Equations

The ground state for the Kohn Sham model
$\hat{\mathbf{u}}_{\mathrm{o}}\left(\left[Z, \mu^{*}\right]\right) \equiv\left(u_{\mathrm{o} 1}, \ldots, u_{\mathrm{o} n_{e}}\right)$,

$$
\begin{align*}
& \hat{\mathbf{u}}_{\mathrm{o}}([Z, \mu])= \arg \inf _{\hat{\mathbf{w}}_{\mathrm{o}}}\left\{E_{\mathrm{o}}\left(\hat{\mathbf{w}}_{\mathrm{o}} \equiv\left(w_{\mathrm{o} 1}, \ldots, w_{\mathrm{o} n_{e}}\right) ;[Z, \mu]\right), w_{\mathrm{o}, i} \in Y_{\mathrm{o}},(2)\right. \\
&\left.\int_{\Omega_{o}(\mu)} w_{\mathrm{o}} i w_{\mathrm{o} j}=\delta_{i j}, 1 \leq i, j \leq n_{e}\right\}, \\
& \mu^{*}(Z)=\arg \inf _{\mu}\left\{\mathcal{E}_{\mathrm{o}}\left(\hat{\mathbf{u}}_{\mathrm{o}}([Z, \mu]) ;[Z, \mu]\right) ; \mu>0\right\} ; \tag{3}
\end{align*}
$$

with $Y_{\mathrm{o}} \equiv H_{\mathrm{per}}^{1}\left(\Omega_{\mathrm{o}}(\mu)\right)$

Reduced Basis Formulation for Kohn Sham Equations

and the electronic energy $E_{o}\left(\hat{\mathbf{w}}_{0} ;[Z, \mu]\right)$ is defined as

$$
\begin{aligned}
& E_{\mathrm{o}}\left(\hat{\mathbf{w}}_{\mathrm{o}} ;[Z, \mu]\right)=C_{w} \sum_{i=1}^{n_{e}} \int_{\Omega_{0}(\mu)}\left(\nabla w_{\mathrm{o} i}\right)^{2}-Z \sum_{i=1}^{n_{e}} \int_{\Omega_{0}(\mu)} G_{\mathrm{o}} w_{\mathrm{o} i}^{2} \\
& +\frac{1}{2} C_{C} \int_{\Omega_{0}(\mu)} \int_{\Omega_{0}(\mu)}\left(\sum_{i=1}^{n_{e}} w_{\mathrm{o} i}^{2}\left(y_{1}\right)\right) G_{\mathrm{o}}\left(y_{1}-y_{2}\right)\left(\sum_{j=1}^{n_{e}} w_{\mathrm{o} j}^{2}\left(y_{2}\right)\right) d y_{1} c \\
& -C_{X} \sum_{i=1}^{n_{e}} \int_{\Omega_{0}(\mu)}\left(\sum_{j=1}^{n_{e}} w_{\mathrm{o} j}^{2}\right)^{4 / 3} w_{\mathrm{o} i}^{2}
\end{aligned}
$$

the periodic Green's function $G_{0}(\cdot ; \mu): \Omega_{0}(\mu) \rightarrow R$ satisfies
$-\Delta G_{0}=\left\{\delta(y)-\frac{1}{\left|\Omega_{0}(\mu)\right|}\right\}, \int_{\Omega_{0}(\mu)} G_{0}=0,\left|\Omega_{0}(\mu)\right|=\mu$ is a nucleus geometric parameter.

Reduced Basis Formulation for Kohn Sham Equations

N^{u}	$\varepsilon_{N, M}^{u}$	$\varepsilon_{N, M}^{\mathcal{E}}$	$\varepsilon_{N, M}^{\phi}$	$\varepsilon_{N, M}^{\text {ortho }}$
5	$7.9044 \mathrm{E}-2$	$4.6557 \mathrm{E}-04$	$1.4647 \mathrm{E}+0$	$5.1756 \mathrm{E}-14$
6	$4.5693 \mathrm{E}-2$	$3.5279 \mathrm{E}-05$	$1.2839 \mathrm{E}-1$	$3.6342 \mathrm{E}-3$
7	$2.1383 \mathrm{E}-4$	$1.3947 \mathrm{E}-09$	$1.0334 \mathrm{E}-3$	$2.1783 \mathrm{E}-5$
8	$9.8819 \mathrm{E}-5$	$8.8168 \mathrm{E}-10$	$3.7635 \mathrm{E}-4$	$1.0686 \mathrm{E}-5$
9	$9.7602 \mathrm{E}-6$	$3.0509 \mathrm{E}-10$	$3.8463 \mathrm{E}-5$	$8.9840 \mathrm{E}-7$

Table: Variations of the reduced-basis errors $\varepsilon_{N, M}^{u}, \varepsilon_{N, M}^{\mathcal{E}}, \varepsilon_{N, M}^{\phi}$ and $\varepsilon_{N, M}^{\text {ortho }}$ with N^{u}. Here, $n_{e}=5$ and $1.5 \leq \mu \leq 5.5$.

Reduced Basis Formulation for Kohn Sham Equations

here it is not only

$$
u(\mu) \simeq \sum_{i=1}^{N} \alpha_{i} u\left(\mu_{i}\right)
$$

with α_{i} independant of n

so that the complexity scales with N and not with $n_{e} \times N$

Reduced Basis Formulation for Kohn Sham Equations

here it is not only but

$$
\forall n \leq n_{e}, \quad u_{n}(\mu) \simeq \sum_{i=1}^{N} \alpha_{i} u_{n}\left(\mu_{i}\right)
$$

with α_{i} independant of n

so that the complexity scales with N and not with $n_{e} \times N$

Reduced Basis Formulation for Kohn Sham Equations

here it is notonly but

$$
\forall n \leq n_{e}, \quad u_{n}(\mu) \simeq \sum_{i=1}^{N} \alpha_{i} u_{n}\left(\mu_{i}\right)
$$

with α_{i} independant of n
so that the complexity scales with N and not with $n_{e} \times N$

Reduced Basis Formulation for Kohn Sham Equations

Figure: Convergence of reduced basis error in the vectorial case for $2 \leq n_{e} \leq 8$.

Reduced element method

Figure: A first geometry.

Reduced element method

Figure: A second geometry.

Reduced element method

Figure: A third geometry.

Reduced element method

Figure: A fourth geometry.

Reduced element method

As a precomputation, the problem of interest is solved over various deformations of each reference building block and stored, after mapping, on the reference building block.
This gives basis functions $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{N}$, supposed to be linearly
independent
These basics solutions are mapped over each $\Omega_{k}^{b b}$ through φ_{k}.
The solution corresponding to an unknown, deformed geometry is then
represented as a linear combination of these mapped solutions
$Y_{N}=\left\{v_{N} \in L^{2}(\Omega) \mid \quad v_{N \mid \Omega_{k}^{b b}} \circ \varphi_{k} \in \operatorname{span}\left\{\hat{\zeta}_{1}, \hat{\zeta}_{2}, \ldots, \hat{\zeta}_{N}\right\}\right\}$
Note that Y_{N} is not an acceptable discretization space for $H^{1}(\Omega)$, the
matching between the different subdomains is ensured through the
use of Lagrange multipliers

Reduced element method

As a precomputation, the problem of interest is solved over various deformations of each reference building block and stored, after mapping, on the reference building block.
This gives basis functions $\hat{\zeta}_{1}, \hat{\zeta}_{2}, \ldots, \hat{\zeta}_{N}$, supposed to be linearly independent
\square

\square $\operatorname{span}\left\{\zeta_{1}, \zeta_{2}\right.$

Note that Y_{N} is not an acceptable discretization space for $H^{1}(\Omega)$, the matching between the different subdomains is ensured through the use of Lagrange multipliers

Reduced element method

As a precomputation, the problem of interest is solved over various deformations of each reference building block and stored, after mapping, on the reference building block.
This gives basis functions $\hat{\zeta}_{1}, \hat{\zeta}_{2}, \ldots, \hat{\zeta}_{N}$, supposed to be linearly independent
These basics solutions are mapped over each $\Omega_{k}^{b b}$ through φ_{k}.
The solution corresponding to an unknown, deformed geometry is then represented as a linear combination of these mapped solutions
 $v_{N I \Omega^{b b}} \circ \varphi_{k} \in \operatorname{span}\left\{\hat{\zeta}_{1}, \hat{\zeta}_{2}\right.$

Note that Y_{N} is not an acceptable discretization space for $H^{1}(\Omega)$, the matching between the different subdomains is ensured through the use of Lagrange multipliers

Reduced element method

As a precomputation, the problem of interest is solved over various deformations of each reference building block and stored, after mapping, on the reference building block.
This gives basis functions $\hat{\zeta}_{1}, \hat{\zeta}_{2}, \ldots, \hat{\zeta}_{N}$, supposed to be linearly independent
These basics solutions are mapped over each $\Omega_{k}^{b b}$ through φ_{k}.
The solution corresponding to an unknown, deformed geometry is then represented as a linear combination of these mapped solutions

> Note that Y_{N} is not an acceptable discretization space for $H^{1}(\Omega)$, the matching between the different subdomains is ensured through the use of Lagrange multipliers

Reduced element method

As a precomputation, the problem of interest is solved over various deformations of each reference building block and stored, after mapping, on the reference building block.
This gives basis functions $\hat{\zeta}_{1}, \hat{\zeta}_{2}, \ldots, \hat{\zeta}_{N}$, supposed to be linearly independent
These basics solutions are mapped over each $\Omega_{k}^{b b}$ through φ_{k}.
The solution corresponding to an unknown, deformed geometry is then represented as a linear combination of these mapped solutions

$$
Y_{N}=\left\{v_{N} \in L^{2}(\Omega) \mid \quad v_{N \mid \Omega_{k}^{b b}} \circ \varphi_{k} \in \operatorname{span}\left\{\hat{\zeta}_{1}, \hat{\zeta}_{2}, \ldots, \hat{\zeta}_{N}\right\}\right\}
$$

Note that Y_{N} is not an acceptable discretization space for $H^{1}(\Omega)$, the matching between the different subdomains is ensured through the use of Lagrange multipliers

Reduced element method

As a precomputation, the problem of interest is solved over various deformations of each reference building block and stored, after mapping, on the reference building block.
This gives basis functions $\hat{\zeta}_{1}, \hat{\zeta}_{2}, \ldots, \hat{\zeta}_{N}$, supposed to be linearly independent
These basics solutions are mapped over each $\Omega_{k}^{b b}$ through φ_{k}.
The solution corresponding to an unknown, deformed geometry is then represented as a linear combination of these mapped solutions

$$
Y_{N}=\left\{v_{N} \in L^{2}(\Omega) \mid \quad v_{N \mid \Omega_{k}^{b o}} \circ \varphi_{k} \in \operatorname{span}\left\{\hat{\zeta}_{1}, \hat{\zeta}_{2}, \ldots, \hat{\zeta}_{N}\right\}\right\}
$$

Note that Y_{N} is not an acceptable discretization space for $H^{1}(\Omega)$, the matching between the different subdomains is ensured through the use of Lagrange multipliers

Reduced element method

We now define X_{N} to this purpose by gluing the functions of Y_{N} across the interfaces $\gamma_{k, \ell}^{b b}$ between two stages
where $W_{k, \ell}$ is some well chosen space over $\Gamma_{k, \ell}^{e} \rightarrow$ nonconforming
approximation.
The discrete problem then reads: Find u_{N} in X_{N} such that

$$
a\left(u_{N}, v_{N}\right)=f\left(v_{N}\right), \quad \forall v_{N} \in X_{N}
$$

Reduced element method

We now define X_{N} to this purpose by gluing the functions of Y_{N} across the interfaces $\gamma_{k, \ell}^{b b}$ between two stages
\rightarrow Lagrange multipliers
where $W_{k, \ell}$ is some well chosen space over $\Gamma_{k, \ell}^{e} \rightarrow$ nonconforming
approximation.
The discrete problem then reads: Find u_{N} in X_{N} such that

$$
a\left(u_{N}, v_{N}\right)=f\left(v_{N}\right), \quad \forall v_{N} \in X_{N}
$$

Reduced element method

We now define X_{N} to this purpose by gluing the functions of Y_{N} across the interfaces $\gamma_{k, \ell}^{b b}$ between two stages
\rightarrow Lagrange multipliers

$$
X_{N}=\left\{v \in Y_{N}^{1}, \quad \forall k, \ell, \quad \forall \psi \in W_{k, \ell}, \int_{\Gamma_{k, \ell}^{e}}\left(v^{+}-v^{-}\right) \psi d s=0\right\}
$$

where $W_{k, \ell}$ is some well chosen space over $\Gamma_{k, \ell}^{e} \rightarrow$ nonconforming
approximation.
The discrete problem then reads: Find u_{N} in X_{N} such that

$$
a\left(u_{N}, v_{N}\right)=f\left(v_{N}\right), \quad \forall v_{N} \in X_{N}
$$

Reduced element method

We now define X_{N} to this purpose by gluing the functions of Y_{N} across the interfaces $\gamma_{k, \ell}^{b b}$ between two stages
\rightarrow Lagrange multipliers

$$
X_{N}=\left\{v \in Y_{N}^{1}, \quad \forall k, \ell, \quad \forall \psi \in W_{k, \ell}, \int_{\Gamma_{k, \ell}^{e}}\left(v^{+}-v^{-}\right) \psi d s=0\right\}
$$

where $W_{k, \ell}$ is some well chosen space over $\Gamma_{k, \ell}^{e} \rightarrow$ nonconforming approximation.
The discrete problem then reads: Find u_{N} in X_{N} such that

$$
a\left(u_{N}, v_{N}\right)=f\left(v_{N}\right), \quad \forall v_{N} \in X_{N}
$$

Reduced element method

We now define X_{N} to this purpose by gluing the functions of Y_{N} across the interfaces $\gamma_{k, \ell}^{b b}$ between two stages
\rightarrow Lagrange multipliers

$$
X_{N}=\left\{v \in Y_{N}^{1}, \quad \forall k, \ell, \quad \forall \psi \in W_{k, \ell}, \int_{\Gamma_{k, \ell}^{e}}\left(v^{+}-v^{-}\right) \psi d s=0\right\}
$$

where $W_{k, \ell}$ is some well chosen space over $\Gamma_{k, \ell}^{e} \rightarrow$ nonconforming approximation.
The discrete problem then reads: Find u_{N} in X_{N} such that

$$
a\left(u_{N}, v_{N}\right)=f\left(v_{N}\right), \quad \forall v_{N} \in X_{N}
$$

Outline

(1) Motivation

- Framework of the approach
- Parameter dependent problems
- An example
- Application to fluid flows

Fluid flows

For flow problems the tranformations between the reference domain and the subdomains are more involved: The PIOLA Transform that allow the work with divergence free discrete spaces

Fluid flows

For flow problems the tranformations between the reference domain and the subdomains are more involved: The PIOLA Transform that allow the work with divergence free discrete spaces

$$
\hat{u}=\mathcal{J}^{-1}(u \circ \Phi)|J|,
$$

Fluid flows

For flow problems the tranformations between the reference domain and the subdomains are more involved: The PIOLA Transform that allow the work with divergence free discrete spaces

$$
\hat{u}=\mathcal{J}^{-1}(u \circ \Phi)|J|,
$$

\rightarrow The velocity is computed independently of the pressure

Fluid flows

Fluid flows

Figure: Error distribution for a new configuration $N_{P}=15, N_{B}=15$ error plot for the pressure $\max =3.10^{-2}$, for the velocity error $\simeq 3.10^{-3}$.

Fluid flows

Figure: Error distribution for a new configuration $N_{P}=15, N_{B}=30$ error plot for the pressure $\max =6.10^{-3}$, for the velocity error $\simeq 4.10^{-4}$, size problem

Fluid flows

Figure: A stenosis problem with $N_{P}=15, N_{B}=15$.

Fluid flows

Figure: A stenosis problem with $N_{P}=15, N_{B}=30$.

Fluid flows

N	N_{1}	N_{2}	$\left\|u_{N}-u\right\|_{H^{1}}$	$\left\\|p_{N}-p\right\\|_{L^{2}}$
45	9	9	$9.3 \cdot 10^{-3}$	$3.3 \cdot 10$
55	11	11	$3.1 \cdot 10^{-3}$	$5.3 \cdot 10^{-1}$
65	13	13	$2.3 \cdot 10^{-3}$	$9.0 \cdot 10^{-2}$
75	15	15	$1.4 \cdot 10^{-3}$	$5.3 \cdot 10^{-2}$
105	15	30	$5.4 \cdot 10^{-4}$	$3.0 \cdot 10^{-2}$

Table: Steady Stokes solution on a multi-block bypass with three pipe blocks and two bifurcation blocks. Here, $N=3 N_{1}+2 N_{2}$.

Important remarks....

- Note that contrarily to what happens in the parameter dependant problem
- The full problem over the global geometry is never constructed in the reduced element method
- This is a maior achievement
- Note also that, more generally, the reduced basis functions have to be suitably prepared
- Finally, do not forget that off-line pre-computations have to be done, involving your favorit approximation method, and that the approach is rapid for online computations.

Important remarks....

- Note that contrarily to what happens in the parameter dependant problem
- The full problem over the global geometry is never constructed in the reduced element method
- This is a major achievement
- Note also that, more generally, the reduced basis functions have to be suitably prepared
- Finally, do not forget that off-line pre-computations have to be done, involving your favorit approximation method, and that the approach is rapid for online computations.

Important remarks....

- Note that contrarily to what happens in the parameter dependant problem
- The full problem over the global geometry is never constructed in the reduced element method
- This is a major achievement
- Note also that, more generally, the reduced basis functions have to be suitably prepared
- Finally, do not forget that off-line pre-computations have to be done, involving your favorit approximation method, and that the approach is rapid for online computations.

Important remarks....

- Note that contrarily to what happens in the parameter dependant problem
- The full problem over the global geometry is never constructed in the reduced element method
- This is a major achievement
- Note also that, more generally, the reduced basis functions have to be suitably prepared
- Finally, do not forget that off-line pre-computations have to be done, involving your favorit approximation method, and that the approach is rapid for online computations.

Important remarks....

- Note that contrarily to what happens in the parameter dependant problem
- The full problem over the global geometry is never constructed in the reduced element method
- This is a major achievement
- Note also that, more generally, the reduced basis functions have to be suitably prepared
- Finally, do not forget that off-line pre-computations have to be done, involving your favorit approximation method, and that the approach is rapid for online computations.

