High order methods for non linear PDE: Spectral element and reduced basis methods

Y. Maday¹

¹Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie, Paris, France and Brown Univ.

From geometry to numerics

- Parameter dependent problems
- An example
- Application to fluid flows

- 3 →

Basics on approximation

• A lot of problems we have to face in numerical analysis and scientific computing: find *u* such that

$$\mathcal{F}(u) = 0 \tag{1}$$

can actually be written under a variational form : find $u \in \mathcal{X}$ such that

$$\mathcal{A}(u,v) = \langle f, v \rangle, \quad \forall v \in \tilde{\mathcal{X}}$$
 (2)

Where \mathcal{X} and $\tilde{\mathcal{X}}$ are some coherent Banach spaces, \mathcal{A} is an appropriate form, linear in v, and f is a given linear form. For time dependent problem one may specify even : find $u, \forall t, u(t, ;) \in \mathcal{X}$ such that

$$m(\frac{\partial u}{\partial t}, v) + \mathcal{A}(u, v) = < f, v >, \quad \forall v \in \tilde{\mathcal{X}}$$
(2)

Basics on approximation

• A lot of problems we have to face in numerical analysis and scientific computing: find *u* such that

$$\mathcal{F}(u) = 0 \tag{1}$$

can actually be written under a variational form : find $u \in \mathcal{X}$ such that

$$\mathcal{A}(u, v) = \langle f, v \rangle, \quad \forall v \in \tilde{\mathcal{X}}$$
 (2)

Where \mathcal{X} and $\tilde{\mathcal{X}}$ are some coherent Banach spaces, \mathcal{A} is an appropriate form, linear in v, and f is a given linear form. For time dependent problem one may specify even : find $u, \forall t, u(t, ;) \in \mathcal{X}$ such that

$$m(rac{\partial u}{\partial t}, v) + \mathcal{A}(u, v) = < f, v >, \quad \forall v \in \tilde{\mathcal{X}}$$

글 > 세 글

Basics on approximation

• A lot of problems we have to face in numerical analysis and scientific computing: find *u* such that

$$\mathcal{F}(u) = 0 \tag{1}$$

can actually be written under a variational form : find $u \in \mathcal{X}$ such that

$$\mathcal{A}(\boldsymbol{u},\boldsymbol{v}) = < f, \boldsymbol{v} >, \quad \forall \boldsymbol{v} \in \tilde{\mathcal{X}}$$
 (2)

Where \mathcal{X} and $\tilde{\mathcal{X}}$ are some coherent Banach spaces, \mathcal{A} is an appropriate form, linear in v, and f is a given linear form. For time dependent problem one may specify even : find $u, \forall t, u(t, ;) \in \mathcal{X}$ such that

$$m(rac{\partial u}{\partial t},v) + \mathcal{A}(u,v) = < f, v >, \quad \forall v \in \tilde{\mathcal{X}}$$

Basics on approximation

• A lot of problems we have to face in numerical analysis and scientific computing: find *u* such that

$$\mathcal{F}(u) = 0 \tag{1}$$

can actually be written under a variational form : find $u \in \mathcal{X}$ such that

$$\mathcal{A}(\boldsymbol{u},\boldsymbol{v}) = < f, \boldsymbol{v} >, \quad \forall \boldsymbol{v} \in \tilde{\mathcal{X}}$$
 (2)

Where \mathcal{X} and $\tilde{\mathcal{X}}$ are some coherent Banach spaces, \mathcal{A} is an appropriate form, linear in v, and f is a given linear form. For time dependent problem one may specify even : find $u, \forall t, u(t, ;) \in \mathcal{X}$ such that

$$m(\frac{\partial u}{\partial t}, v) + \mathcal{A}(u, v) = < f, v >, \quad \forall v \in \tilde{\mathcal{X}}$$
(2')

The coherence in $\mathcal X$ and $\tilde{\mathcal X}$ is expressed through a condition in terms of $\mathcal A$ that, for linear problems, involves, e.g.

- the Lax Milgram theorem (then $\mathcal{X} = \tilde{\mathcal{X}}$) or
- the Babuška-Brezzi condition.....

that makes explicit conditions under which the problem is well posed : i.e. there exists a unique solution *u* to problem (1).

The coherence in \mathcal{X} and $\tilde{\mathcal{X}}$ is expressed through a condition in terms of \mathcal{A} that, for linear problems, involves, e.g.

• the Lax Milgram theorem (then $\mathcal{X} = \tilde{\mathcal{X}}$) or

• the Babuška-Brezzi condition.....

that makes explicit conditions under which the problem is well posed : i.e. there exists a unique solution *u* to problem (1).

- the Lax Milgram theorem (then $\mathcal{X} = \tilde{\mathcal{X}}$) or
- the Babuška-Brezzi condition.....

that makes explicit conditions under which the problem is well posed : i.e. there exists a unique solution *u* to problem (1).

- the Lax Milgram theorem (then $\mathcal{X} = \tilde{\mathcal{X}}$) or
- the Babuška-Brezzi condition.....

that makes explicit conditions under which the problem is well posed : i.e. there exists a unique solution *u* to problem (1).

- the Lax Milgram theorem (then $\mathcal{X} = \tilde{\mathcal{X}}$) or
- the Babuška-Brezzi condition.....

that makes explicit conditions under which the problem is well posed : i.e. there exists a unique solution u to problem (1).

- the Lax Milgram theorem (then $\mathcal{X} = \tilde{\mathcal{X}}$) or
- the Babuška-Brezzi condition.....

that makes explicit conditions under which the problem is well posed : i.e. there exists a unique solution u to problem (1).

The approximation can now proceed. Two families of finite dimensional spaces $\{\mathcal{X}_n\}_n$ and $\{\tilde{\mathcal{X}}_n\}_n$ are provided, that maintain the above mentioned coherence.

and the discrete space reads : find $u_n \in \mathcal{X}_n$ such that

$$\mathcal{A}_{n}(u_{n}, v_{n}) = \langle f_{n}, v_{n} \rangle, \quad \forall v_{n} \in \tilde{\mathcal{X}}_{n}$$

$$(2_{n})$$

or again for time dependent problems : find u_n , $\forall t$, $u_n(t,;) \in \mathcal{X}_n$ such that

$$m_n(\frac{\partial u_n}{\partial t}, v_n) + \mathcal{A}_n(u_n, v_n) = < f_n, v_n >, \quad \forall v_n \in \tilde{\mathcal{X}}_n$$
(2'_n)

most often further numerical quadratures are involved leading to slightly modified discrete problems

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The approximation can now proceed. Two families of finite dimensional spaces $\{\mathcal{X}_n\}_n$ and $\{\tilde{\mathcal{X}}_n\}_n$ are provided, that maintain the above mentioned coherence.

and the discrete space reads : find $u_n \in \mathcal{X}_n$ such that

$$\mathcal{A}_n(u_n, v_n) = < f_n, v_n >, \quad \forall v_n \in \tilde{\mathcal{X}}_n$$
(2_n)

or again for time dependent problems : find u_n , $\forall t, u_n(t, ;) \in \mathcal{X}_n$ such that

$$m_n(\frac{\partial u_n}{\partial t}, v_n) + \mathcal{A}_n(u_n, v_n) = < f_n, v_n >, \quad \forall v_n \in \tilde{\mathcal{X}}_n$$
(2'_n)

most often further numerical quadratures are involved leading to slightly modified discrete problems

A (10) A (10)

The approximation can now proceed. Two families of finite dimensional spaces $\{\mathcal{X}_n\}_n$ and $\{\tilde{\mathcal{X}}_n\}_n$ are provided, that maintain the above mentioned coherence.

and the discrete space reads : find $u_n \in \mathcal{X}_n$ such that

$$\mathcal{A}_{n}(u_{n},v_{n}) = < f_{n},v_{n}>, \quad \forall v_{n} \in \tilde{\mathcal{X}}_{n}$$

$$(2_{n})$$

or again for time dependent problems : find u_n , $\forall t, u_n(t, ;) \in \mathcal{X}_n$ such that

$$m_{n}(\frac{\partial u_{n}}{\partial t}, v_{n}) + \mathcal{A}_{n}(u_{n}, v_{n}) = \langle f_{n}, v_{n} \rangle, \quad \forall v_{n} \in \tilde{\mathcal{X}}_{n}$$
(2'_n)

most often further numerical quadratures are involved leading to slightly modified discrete problems

(4回) (4回) (4回)

The approximation can now proceed. Two families of finite dimensional spaces $\{\mathcal{X}_n\}_n$ and $\{\tilde{\mathcal{X}}_n\}_n$ are provided, that maintain the above mentioned coherence.

and the discrete space reads : find $u_n \in \mathcal{X}_n$ such that

$$\mathcal{A}_n(u_n, v_n) = < f_n, v_n >, \quad \forall v_n \in \tilde{\mathcal{X}}_n$$
(2_n)

or again for time dependent problems : find u_n , $\forall t, u_n(t, ;) \in \mathcal{X}_n$ such that

$$m_{n}(\frac{\partial u_{n}}{\partial t}, v_{n}) + \mathcal{A}_{n}(u_{n}, v_{n}) = \langle f_{n}, v_{n} \rangle, \quad \forall v_{n} \in \tilde{\mathcal{X}}_{n}$$
(2'_n)

most often further numerical quadratures are involved leading to slightly modified discrete problems

A (10) A (10)

The approximation can now proceed. Two families of finite dimensional spaces $\{\mathcal{X}_n\}_n$ and $\{\tilde{\mathcal{X}}_n\}_n$ are provided, that maintain the above mentioned coherence.

and the discrete space reads : find $u_n \in \mathcal{X}_n$ such that

$$\mathcal{A}_{n}(u_{n}, v_{n}) = < f_{n}, v_{n} >, \quad \forall v_{n} \in \tilde{\mathcal{X}}_{n}$$

$$(2_{n})$$

or again for time dependent problems : find u_n , $\forall t, u_n(t, ;) \in \mathcal{X}_n$ such that

$$m_{n}(\frac{\partial u_{n}}{\partial t}, v_{n}) + \mathcal{A}_{n}(u_{n}, v_{n}) = \langle f_{n}, v_{n} \rangle, \quad \forall v_{n} \in \tilde{\mathcal{X}}_{n}$$
(2'_n)

most often further numerical quadratures are involved leading to slightly modified discrete problems

A (10) A (10)

The discrete solutions u_n exist and are unique

- An error bound $||u u_N||_{\mathcal{X}} \le c \inf_{w_n \in \mathcal{X}_n} ||u w_N||_{\mathcal{X}}$ can be derived
- The best fit, $\inf_{w_n \in \mathcal{X}_n} \|u w_N\|_{\mathcal{X}}$, goes to zero rapidly
- The effective computation of *u_n* is easy enough
- An a posteriori error providing the size of $||u u_N||_{\mathcal{X}}$ is available
- An a posteriori indicator telling what to do to improve $||u u_N||_{\mathcal{X}}$ is available

• The discrete solutions *u_n* exist and are unique

- An error bound $||u u_N||_{\mathcal{X}} \le c \inf_{w_n \in \mathcal{X}_n} ||u w_N||_{\mathcal{X}}$ can be derived
- The best fit, $\inf_{w_n \in \mathcal{X}_n} \|u w_N\|_{\mathcal{X}}$, goes to zero rapidly
- The effective computation of *u_n* is easy enough
- An a posteriori error providing the size of $||u u_N||_{\mathcal{X}}$ is available
- An a posteriori indicator telling what to do to improve $||u u_N||_{\mathcal{X}}$ is available

- The discrete solutions *u_n* exist and are unique
- An error bound $\|u u_N\|_{\mathcal{X}} \le c \inf_{w_n \in \mathcal{X}_n} \|u w_N\|_{\mathcal{X}}$ can be derived
- The best fit, $\inf_{w_n \in \mathcal{X}_n} \|u w_N\|_{\mathcal{X}}$, goes to zero rapidly
- The effective computation of *u_n* is easy enough
- An a posteriori error providing the size of $||u u_N||_{\mathcal{X}}$ is available
- An a posteriori indicator telling what to do to improve $||u u_N||_{\mathcal{X}}$ is available

- The discrete solutions *u_n* exist and are unique
- An error bound $\|u u_N\|_{\mathcal{X}} \le c \inf_{w_n \in \mathcal{X}_n} \|u w_N\|_{\mathcal{X}}$ can be derived
- The best fit, $\inf_{w_n \in \mathcal{X}_n} \|u w_N\|_{\mathcal{X}}$, goes to zero rapidly
- The effective computation of u_n is easy enough
- An a posteriori error providing the size of $||u u_N||_{\mathcal{X}}$ is available
- An a posteriori indicator telling what to do to improve $||u u_N||_{\mathcal{X}}$ is available

米国 とくほとくほど

- The discrete solutions *u_n* exist and are unique
- An error bound $||u u_N||_{\mathcal{X}} \le c \inf_{w_n \in \mathcal{X}_n} ||u w_N||_{\mathcal{X}}$ can be derived
- The best fit, $\inf_{w_n \in \mathcal{X}_n} \|u w_N\|_{\mathcal{X}}$, goes to zero rapidly
- The effective computation of *u_n* is easy enough
- An a posteriori error providing the size of $||u u_N||_{\mathcal{X}}$ is available
- An a posteriori indicator telling what to do to improve $||u u_N||_{\mathcal{X}}$ is available

- The discrete solutions *u_n* exist and are unique
- An error bound $||u u_N||_{\mathcal{X}} \le c \inf_{w_n \in \mathcal{X}_n} ||u w_N||_{\mathcal{X}}$ can be derived
- The best fit, $\inf_{w_n \in \mathcal{X}_n} \|u w_N\|_{\mathcal{X}}$, goes to zero rapidly
- The effective computation of *u_n* is easy enough
- An a posteriori error providing the size of $||u u_N||_{\mathcal{X}}$ is available
- An a posteriori indicator telling what to do to improve $||u u_N||_{\mathcal{X}}$ is available

- The discrete solutions *u_n* exist and are unique
- An error bound $\|u u_N\|_{\mathcal{X}} \le c \inf_{w_n \in \mathcal{X}_n} \|u w_N\|_{\mathcal{X}}$ can be derived
- The best fit, $\inf_{w_n \in \mathcal{X}_n} \|u w_N\|_{\mathcal{X}}$, goes to zero rapidly
- The effective computation of *u_n* is easy enough
- An a posteriori error providing the size of $||u u_N||_{\mathcal{X}}$ is available
- An a posteriori indicator telling what to do to improve $||u u_N||_{\mathcal{X}}$ is available

• Spectral and spectral element methods X_n are based on high order polynomial expansions

- Nonlinear approximations/ multiresolution analysis X_n are based on wavelet approximations
- Reduced basis X_n are based on previously computed solutions.

- Spectral and spectral element methods X_n are based on high order polynomial expansions
- Nonlinear approximations/ multiresolution analysis X_n are based on wavelet approximations
- Reduced basis X_n are based on previously computed solutions

- Spectral and spectral element methods X_n are based on high order polynomial expansions
- Nonlinear approximations/ multiresolution analysis X_n are based on wavelet approximations
- Reduced basis X_n are based on previously computed solutions.

- Spectral and spectral element methods X_n are based on high order polynomial expansions
- Nonlinear approximations/ multiresolution analysis X_n are based on wavelet approximations

Reduced basis X_n are based on previously computed solutions

- Spectral and spectral element methods X_n are based on high order polynomial expansions
- Nonlinear approximations/ multiresolution analysis X_n are based on wavelet approximations
- Reduced basis X_n are based on previously computed solutions

- Spectral and spectral element methods X_n are based on high order polynomial expansions
- Nonlinear approximations/ multiresolution analysis X_n are based on wavelet approximations
- Reduced basis X_n are based on previously computed solutions

- For any integer N, IP_N is the set of all polynomials of degree $\leq N$
- Classical approximation results are known in C⁰-norm and reveal infinite order accuracy
- We are interested in Sobolev norms:

$$H^1 = \{ v \in L^2, \quad v' \in L^2 \}$$

$$H^r = \{ v \in L^2, \quad v' \in H^{r-1} \}$$

• For any integer N, IP_N is the set of all polynomials of degree $\leq N$

- Classical approximation results are known in C⁰-norm and reveal infinite order accuracy
- We are interested in Sobolev norms:

$$H^1 = \{ v \in L^2, \quad v' \in L^2 \}$$

$$H^r = \{ v \in L^2, \quad v' \in H^{r-1} \}$$

- For any integer N, IP_N is the set of all polynomials of degree $\leq N$
- Classical approximation results are known in C^0 -norm and reveal infinite order accuracy

• We are interested in Sobolev norms:

 $H^1 = \{ v \in L^2, \quad v' \in L^2 \}$

 $H^r = \{ v \in L^2, \quad v' \in H^{r-1} \}$

- For any integer N, IP_N is the set of all polynomials of degree $\leq N$
- Classical approximation results are known in C^0 -norm and reveal infinite order accuracy
- We are interested in Sobolev norms:

$$H^1 = \{ v \in L^2, \quad v' \in L^2 \}$$

$$H^r = \{ v \in L^2, \quad v' \in H^{r-1} \}$$

- For any integer N, IP_N is the set of all polynomials of degree $\leq N$
- Classical approximation results are known in C⁰-norm and reveal infinite order accuracy
- We are interested in Sobolev norms:

$$H^1 = \{ v \in L^2, \quad v' \in L^2 \}$$

$$H^r = \{ v \in L^2, \quad v' \in H^{r-1} \}$$

- For any integer N, IP_N is the set of all polynomials of degree $\leq N$
- Classical approximation results are known in C⁰-norm and reveal infinite order accuracy
- We are interested in Sobolev norms:

$$H^1 = \{ v \in L^2, \quad v' \in L^2 \}$$

$$H^r = \{ v \in L^2, \quad v' \in H^{r-1} \}$$
- For any integer N, IP_N is the set of all polynomials of degree $\leq N$
- Classical approximation results are known in C⁰-norm and reveal infinite order accuracy
- We are interested in Sobolev norms:

$$H^1=\{v\in L^2, \quad v'\in L^2\}$$

$$H^r = \{ v \in L^2, \quad v' \in H^{r-1} \}$$

•
$$\inf_{v_N} \|u - v_N\|_{H^1} \le cN^{1-r} \|u\|_{H^r}$$

- For any integer N, IP_N is the set of all polynomials of partial degree ≤ N
- The approximation results can be extended

 $H^r = \{ v \in L^2, \quad \nabla v \in H^{r-1} \}$

• $\inf_{v_N} \|u - v_N\|_{H^1} \le cN^{1-r} \|u\|_{H^r}$

A (10) F (10)

- For any integer *N*, *IP_N* is the set of all polynomials of partial degree ≤ *N*
- The approximation results can be extended

 $H^r = \{ v \in L^2, \quad \nabla v \in H^{r-1} \}$

• $\inf_{v_N} ||u - v_N||_{H^1} \le cN^{1-r} ||u||_{H^r}$

A (1) > A (2) > A

- For any integer *N*, IP_N is the set of all polynomials of partial degree $\leq N$
- The approximation results can be extended

 $H^r = \{ v \in L^2, \quad \nabla v \in H^{r-1} \}$

• $\inf_{v_N} ||u - v_N||_{H^1} \le cN^{1-r} ||u||_{H^r}$

A (10) > A (10) > A (10)

- For any integer *N*, IP_N is the set of all polynomials of partial degree $\leq N$
- The approximation results can be extended

 $H^r = \{ v \in L^2, \quad \nabla v \in H^{r-1} \}$

• $\inf_{v_N} ||u - v_N||_{H^1} \le cN^{1-r} ||u||_{H^r}$

A (10) > A (10) > A (10)

- For any integer *N*, *IP_N* is the set of all polynomials of partial degree ≤ *N*
- The approximation results can be extended

$$H^1 = \{ v \in L^2, \quad \nabla v \in L^2 \}$$

 $H^r = \{ v \in L^2, \quad \nabla v \in H^{r-1} \}$

• $\inf_{v_N} ||u - v_N||_{H^1} \le cN^{1-r} ||u||_{H^r}$

A (10) > A (10) > A (10)

- For any integer *N*, *IP_N* is the set of all polynomials of partial degree ≤ *N*
- The approximation results can be extended

$$H^1 = \{ v \in L^2, \quad \nabla v \in L^2 \}$$

$$H^r = \{ v \in L^2, \quad \nabla v \in H^{r-1} \}$$

• $\inf_{v_N} ||u - v_N||_{H^1} \le cN^{1-r} ||u||_{H^r}$

- **→ → →**

- For any integer *N*, *IP_N* is the set of all polynomials of partial degree ≤ *N*
- The approximation results can be extended

$$H^1 = \{ v \in L^2, \quad \nabla v \in L^2 \}$$

$$H^r = \{ v \in L^2, \quad \nabla v \in H^{r-1} \}$$

•
$$\inf_{v_N} \|u - v_N\|_{H^1} \le cN^{1-r} \|u\|_{H^r}$$

A (10) F (10)

Definition of the problem

Consider the Navier Stokes problem

• Find **u** and *p* such that

$$\frac{\partial \mathbf{u}}{\partial t} - \nu \Delta \mathbf{u} + \mathbf{u} \nabla \mathbf{u} + \nabla p = \mathbf{f}$$
$$div(\mathbf{u}) = 0$$

Variational formulation

$$\int_{\Omega} \frac{\partial \mathbf{u}}{\partial t} \mathbf{v} + \int_{\Omega} \nabla \mathbf{u} \nabla \mathbf{v} + \int_{\Omega} \mathbf{u} \nabla \mathbf{u} \mathbf{v} - \int_{\Omega} \rho di \mathbf{v}(\mathbf{v}) = \int_{\Omega} \mathbf{f} \mathbf{v}$$

• the spectral approximation : find u_N and p_N such that

 $\int_{\Omega} \frac{\partial \mathbf{u}_N}{\partial t} \mathbf{v}_N + \int_{\Omega} \nabla \mathbf{u}_N \nabla \mathbf{v}_N + \int_{\Omega} \mathbf{u}_N \nabla \mathbf{u}_N \mathbf{v}_N - \int_{\Omega} p_N div(\mathbf{v}_N) = \int_{\Omega} \mathbf{f} \mathbf{v}_N$

Spectral methods. Definition of the problem

- Consider the Navier Stokes problem
- Find **u** and *p* such that

$$\frac{\partial \mathbf{u}}{\partial t} - \nu \Delta \mathbf{u} + \mathbf{u} \nabla \mathbf{u} + \nabla p = \mathbf{f}$$
$$div(\mathbf{u}) = \mathbf{0}$$

Variational formulation

$$\int_{\Omega} \frac{\partial \mathbf{u}}{\partial t} \mathbf{v} + \int_{\Omega} \nabla \mathbf{u} \nabla \mathbf{v} + \int_{\Omega} \mathbf{u} \nabla \mathbf{u} \mathbf{v} - \int_{\Omega} \rho di \mathbf{v}(\mathbf{v}) = \int_{\Omega} \mathbf{f} \mathbf{v}$$

• the spectral approximation : find u_N and p_N such that

 $\int_{\Omega} \frac{\partial \mathbf{u}_N}{\partial t} \mathbf{v}_N + \int_{\Omega} \nabla \mathbf{u}_N \nabla \mathbf{v}_N + \int_{\Omega} \mathbf{u}_N \nabla \mathbf{u}_N \mathbf{v}_N - \int_{\Omega} p_N div(\mathbf{v}_N) = \int_{\Omega} \mathbf{f} \mathbf{v}_N$

- ∢ ∃ ▶

Spectral methods. Definition of the problem

- Consider the Navier Stokes problem
- Find **u** and *p* such that

$$\frac{\partial \mathbf{u}}{\partial t} - \nu \Delta \mathbf{u} + \mathbf{u} \nabla \mathbf{u} + \nabla p = \mathbf{f}$$
$$div(\mathbf{u}) = \mathbf{0}$$

Variational formulation

$$\int_{\Omega} \frac{\partial \mathbf{u}}{\partial t} \mathbf{v} + \int_{\Omega} \nabla \mathbf{u} \nabla \mathbf{v} + \int_{\Omega} \mathbf{u} \nabla \mathbf{u} \mathbf{v} - \int_{\Omega} p di \mathbf{v}(\mathbf{v}) = \int_{\Omega} \mathbf{f} \mathbf{v}$$

• the spectral approximation : find u_N and p_N such that

 $\int_{\Omega} \frac{\partial \mathbf{u}_N}{\partial t} \mathbf{v}_N + \int_{\Omega} \nabla \mathbf{u}_N \nabla \mathbf{v}_N + \int_{\Omega} \mathbf{u}_N \nabla \mathbf{u}_N \mathbf{v}_N - \int_{\Omega} \rho_N div(\mathbf{v}_N) = \int_{\Omega} \mathbf{f} \mathbf{v}_N$

- Consider the Navier Stokes problem
- Find **u** and *p* such that

$$\frac{\partial \mathbf{u}}{\partial t} - \nu \Delta \mathbf{u} + \mathbf{u} \nabla \mathbf{u} + \nabla \boldsymbol{\rho} = \mathbf{f}$$
$$div(\mathbf{u}) = \mathbf{0}$$

Variational formulation

$$\int_{\Omega} \frac{\partial \mathbf{u}}{\partial t} \mathbf{v} + \int_{\Omega} \nabla \mathbf{u} \nabla \mathbf{v} + \int_{\Omega} \mathbf{u} \nabla \mathbf{u} \mathbf{v} - \int_{\Omega} p di \mathbf{v}(\mathbf{v}) = \int_{\Omega} \mathbf{f} \mathbf{v}$$

the spectral approximation : find u_N and p_N such that

 $\int_{\Omega} \frac{\partial \mathbf{u}_N}{\partial t} \mathbf{v}_N + \int_{\Omega} \nabla \mathbf{u}_N \nabla \mathbf{v}_N + \int_{\Omega} \mathbf{u}_N \nabla \mathbf{u}_N \mathbf{v}_N - \int_{\Omega} p_N di \mathbf{v}(\mathbf{v}_N) = \int_{\Omega} \mathbf{f} \mathbf{v}_N$

- Consider the Navier Stokes problem
- Find **u** and *p* such that

$$\frac{\partial \mathbf{u}}{\partial t} - \nu \Delta \mathbf{u} + \mathbf{u} \nabla \mathbf{u} + \nabla \boldsymbol{\rho} = \mathbf{f}$$
$$div(\mathbf{u}) = \mathbf{0}$$

Variational formulation

$$\int_{\Omega} \frac{\partial \mathbf{u}}{\partial t} \mathbf{v} + \int_{\Omega} \nabla \mathbf{u} \nabla \mathbf{v} + \int_{\Omega} \mathbf{u} \nabla \mathbf{u} \mathbf{v} - \int_{\Omega} p di \mathbf{v}(\mathbf{v}) = \int_{\Omega} \mathbf{f} \mathbf{v}$$

• the spectral approximation : find **u**_N and *p*_N such that

$$\int_{\Omega} \frac{\partial \mathbf{u}_N}{\partial t} \mathbf{v}_N + \int_{\Omega} \nabla \mathbf{u}_N \nabla \mathbf{v}_N + \int_{\Omega} \mathbf{u}_N \nabla \mathbf{u}_N \mathbf{v}_N - \int_{\Omega} p_N div(\mathbf{v}_N) = \int_{\Omega} \mathbf{f} \mathbf{v}_N$$

- Consider the Navier Stokes problem
- Find **u** and *p* such that

$$\frac{\partial \mathbf{u}}{\partial t} - \nu \Delta \mathbf{u} + \mathbf{u} \nabla \mathbf{u} + \nabla \boldsymbol{\rho} = \mathbf{f}$$
$$div(\mathbf{u}) = \mathbf{0}$$

Variational formulation

$$\int_{\Omega} \frac{\partial \mathbf{u}}{\partial t} \mathbf{v} + \int_{\Omega} \nabla \mathbf{u} \nabla \mathbf{v} + \int_{\Omega} \mathbf{u} \nabla \mathbf{u} \mathbf{v} - \int_{\Omega} p di \mathbf{v}(\mathbf{v}) = \int_{\Omega} \mathbf{f} \mathbf{v}$$

• the spectral approximation : find \mathbf{u}_N and p_N such that

$$\int_{\Omega} \frac{\partial \mathbf{u}_N}{\partial t} \mathbf{v}_N + \int_{\Omega} \nabla \mathbf{u}_N \nabla \mathbf{v}_N + \int_{\Omega} \mathbf{u}_N \nabla \mathbf{u}_N \mathbf{v}_N - \int_{\Omega} p_N div(\mathbf{v}_N) = \int_{\Omega} \mathbf{f} \mathbf{v}_N$$

- 3 →

Coherent spaces

$$\int_{\Omega} \frac{\partial \mathbf{u}_N}{\partial t} \mathbf{v}_N + \int_{\Omega} \nabla \mathbf{u}_N \nabla \mathbf{v}_N + \int_{\Omega} \mathbf{u}_N \nabla \mathbf{u}_N \mathbf{v}_N - \int_{\Omega} p_N div(\mathbf{v}_N) = \int_{\Omega} \mathbf{f} \mathbf{v}_N$$
$$\int_{\Omega} q_N div(\mathbf{u}_N) = 0$$

the degrees of \mathbf{u}_N and p_N cannot be the same.... spurious pressure modes

degree of $\mathbf{u}_N = N$ (idem for \mathbf{v}_N) and degree of $p_N = N - 2$ (idem for q_N) leads to a unique solution

Coherent spaces

•

$$\int_{\Omega} \frac{\partial \mathbf{u}_{N}}{\partial t} \mathbf{v}_{N} + \int_{\Omega} \nabla \mathbf{u}_{N} \nabla \mathbf{v}_{N} + \int_{\Omega} \mathbf{u}_{N} \nabla \mathbf{u}_{N} \mathbf{v}_{N} - \int_{\Omega} p_{N} div(\mathbf{v}_{N}) = \int_{\Omega} \mathbf{f} \mathbf{v}_{N}$$
•

$$\int_{\Omega} q_{N} div(\mathbf{u}_{N}) = 0$$

the degrees of \mathbf{u}_N and p_N cannot be the same.... spurious pressure modes

degree of $\mathbf{u}_N = N$ (idem for \mathbf{v}_N) and degree of $p_N = N - 2$ (idem for q_N) leads to a unique solution

Coherent spaces

$$\int_{\Omega} \frac{\partial \mathbf{u}_N}{\partial t} \mathbf{v}_N + \int_{\Omega} \nabla \mathbf{u}_N \nabla \mathbf{v}_N + \int_{\Omega} \mathbf{u}_N \nabla \mathbf{u}_N \mathbf{v}_N - \int_{\Omega} p_N div(\mathbf{v}_N) = \int_{\Omega} \mathbf{f} \mathbf{v}_N$$

$$\int_{\Omega} q_N div(\mathbf{u}_N) = 0$$

the degrees of \mathbf{u}_N and p_N cannot be the same.... spurious pressure modes

degree of $\mathbf{u}_N = N$ (idem for \mathbf{v}_N) and degree of $p_N = N - 2$ (idem for q_N) leads to a unique solution

• • • • • • • • • • • • •

Coherent spaces

٥

$$\int_{\Omega} \frac{\partial \mathbf{u}_N}{\partial t} \mathbf{v}_N + \int_{\Omega} \nabla \mathbf{u}_N \nabla \mathbf{v}_N + \int_{\Omega} \mathbf{u}_N \nabla \mathbf{u}_N \mathbf{v}_N - \int_{\Omega} p_N div(\mathbf{v}_N) = \int_{\Omega} \mathbf{f} \mathbf{v}_N$$

$$\int_{\Omega} q_N div(\mathbf{u}_N) = 0$$

the degrees of \mathbf{u}_N and p_N cannot be the same.... spurious pressure modes

degree of $\mathbf{u}_N = N$ (idem for \mathbf{v}_N) and degree of $p_N = N - 2$ (idem for q_N) leads to a unique solution

- The nonlinear contribution ∫_Ω **u**_N∇**u**_N**v**_N is a problem from the computational point of view
- We need to evaluate these contribution efficiently: the idea is to make use of a numerical integration that should not destroy the accuracy : Gauss type formula
- $\int_{\Omega} \mathbf{u}_N \nabla \mathbf{u}_N \mathbf{v}_N$ is evaluated by $\sum_{i,j} \mathbf{u}_N(\xi_{ij}) \nabla \mathbf{u}_N(\xi_{ij}) \mathbf{v}_N(\xi_{ij}) \omega_{ij}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The nonlinear contribution
 [∫]_Ω u_N∇u_Nv_N is a problem from the computational point of view
- We need to evaluate these contribution efficiently: the idea is to make use of a numerical integration that should not destroy the accuracy : Gauss type formula

A (10) A (10) A (10)

- The nonlinear contribution
 [∫]_Ω u_N∇u_Nv_N is a problem from the computational point of view
- We need to evaluate these contribution efficiently: the idea is to make use of a numerical integration that should not destroy the accuracy : Gauss type formula

- The nonlinear contribution ∫_Ω **u**_N∇**u**_N**v**_N is a problem from the computational point of view
- We need to evaluate these contribution efficiently: the idea is to make use of a numerical integration that should not destroy the accuracy : Gauss type formula

A (1) > A (2) > A

- The nonlinear contribution ∫_Ω **u**_N∇**u**_N**v**_N is a problem from the computational point of view
- We need to evaluate these contribution efficiently: the idea is to make use of a numerical integration that should not destroy the accuracy : Gauss type formula

Extension to curved domains

Figure: The domain of interest is obtained as a regular deformation of the square

Domain decomposition

Figure: The domain of interest is decomposed into a union of nonoverlapping deformed squares

• • • • • • • • • • • • •

This non overlapping domain decomposition $\Omega = \bigcup \Omega^k$ allows to write simply the integral over Ω as a sum of integrals over each of the subdomains Ω^k .

$$\sum_{k=1}^{K} \sum_{i,j} \frac{\partial \mathbf{u}_{N}}{\partial t} \mathbf{v}_{N}(\xi_{ij}^{k}) \omega_{ij}^{k} + \sum_{k=1}^{K} \sum_{i,j} \nabla \mathbf{u}_{N} \mathbf{v}_{N}(\xi_{ij}^{k}) \omega_{ij}^{k} \dots$$

This way, we do not have to wonder about the matching, only continuity is imposed at the interfaces

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

This non overlapping domain decomposition $\Omega = \bigcup \Omega^k$ allows to write simply the integral over Ω as a sum of integrals over each of the subdomains Ω^k .

$$\sum_{k=1}^{K} \sum_{i,j} \frac{\partial \mathbf{u}_{N}}{\partial t} \mathbf{v}_{N}(\xi_{ij}^{k}) \omega_{ij}^{k} + \sum_{k=1}^{K} \sum_{i,j} \nabla \mathbf{u}_{N} \mathbf{v}_{N}(\xi_{ij}^{k}) \omega_{ij}^{k} \dots$$

This way, we do not have to wonder about the matching, only continuity is imposed at the interfaces

A (10) A (10) A (10)

This non overlapping domain decomposition $\Omega = \bigcup \Omega^k$ allows to write simply the integral over Ω as a sum of integrals over each of the subdomains Ω^k .

$$\sum_{k=1}^{K} \sum_{i,j} \frac{\partial \mathbf{u}_{N}}{\partial t} \mathbf{v}_{N}(\xi_{ij}^{k}) \omega_{ij}^{k} + \sum_{k=1}^{K} \sum_{i,j} \nabla \mathbf{u}_{N} \mathbf{v}_{N}(\xi_{ij}^{k}) \omega_{ij}^{k} \dots$$

This way, we do not have to wonder about the matching, only continuity is imposed at the interfaces

< 🗇 🕨 < 🖻 🕨

This variational formulation + numerical integration + non overlapping DD allows also to be able to use different polynomial degree in each subdomain

Figure: non matching grids treated by the mortar element method, by Y. Capdeville, E. Chaljub, J.P. Vilotte, J.P. Montagner

Y. Maday (Paris 6 & Brown)

Reduced basis methods

Paris 2006 16 / 58

Non regular solutions

If the solution to be approximated is only piecewise regular but globally discontinuous

Spectral approximations lead to furious oscillations.... but a post treatment is possible

Figure: The solution before post processing, from S.M. Kaber 💿 👁

Y. Maday (Paris 6 & Brown)

Reduced basis methods

Non regular solutions

If the solution to be approximated is only piecewise regular but globally discontinuous

Spectral approximations lead to furious oscillations.... but a post treatment is possible

Figure: The solution AFTER the postprocessing, from S.M. Kaber 300 Y. Maday. (Paris 6 & Brown) Reduced basis methods Paris 2006 18 / 58

Non regular solutions

Figure: , from S.M. Kaber

Y. Maday (Paris 6 & Brown)

Reduced basis methods

Non regular solutions

Figure: , from S.M. Kaber

Y. Maday (Paris 6 & Brown)

- 4

Non regular solutions

Figure: , from S.M. Kaber

Y. Maday (Paris 6 & Brown)

< A

Non regular solutions

Figure: , from S.M. Kaber

Non regular solutions

Y. Maday (Paris 6 & Brown)

Reduced basis methods

Paris 2006 23 / 58
Spectral methods.

Non regular solutions

Y. Maday (Paris 6 & Brown)

Reduced basis methods

Paris 2006 24 / 58

Here what we want to use is an a priori knowledge of a reduced space X much smaller than \mathcal{X} where the solution to (1) should be sought. We present here two classes of problems where this strategy can be used

- parameter dependent problems
- hierarchical geometry for the domain

in both cases the space X is conceived from the use of a more standard approximation methods you do not have to forget your favorite method... it is more the opposite in a first step

Here what we want to use is an a priori knowledge of a reduced space X much smaller than \mathcal{X} where the solution to (1) should be sought We present here two classes of problems where this strategy can be used

- parameter dependent problems
- hierarchical geometry for the domain

in both cases the space X is conceived from the use of a more standard approximation methods you do not have to forget your favorite method... it is more the opposite in a first step

Here what we want to use is an a priori knowledge of a reduced space X much smaller than \mathcal{X} where the solution to (1) should be sought We present here two classes of problems where this strategy can be used

parameter dependent problems

hierarchical geometry for the domain

in both cases the space X is conceived from the use of a more standard approximation methods you do not have to forget your favorite method... it is more the opposite in a first step

Here what we want to use is an a priori knowledge of a reduced space X much smaller than \mathcal{X} where the solution to (1) should be sought We present here two classes of problems where this strategy can be used

- parameter dependent problems
- hierarchical geometry for the domain

in both cases the space X is conceived from the use of a more standard approximation methods you do not have to forget your favorite method... it is more the opposite in a first step

Here what we want to use is an a priori knowledge of a reduced space X much smaller than \mathcal{X} where the solution to (1) should be sought We present here two classes of problems where this strategy can be used

- parameter dependent problems
- hierarchical geometry for the domain

in both cases the space X is conceived from the use of a more standard approximation methods you do not have to forget your favorite method... it is more the opposite in a first step

Here what we want to use is an a priori knowledge of a reduced space X much smaller than \mathcal{X} where the solution to (1) should be sought We present here two classes of problems where this strategy can be used

- parameter dependent problems
- hierarchical geometry for the domain

in both cases the space X is conceived from the use of a more standard approximation methods you do not have to forget your favorite method... it is more the opposite in a first step

- Framework of the approach
- Parameter dependent problems
- An example
- Application to fluid flows

$$\mathcal{F}(\boldsymbol{u},\boldsymbol{\mu}) = \boldsymbol{0} \tag{1'}$$

and the parameter μ belongs to \mathbf{R}^d (or some brick in \mathbf{R}^d)

- This is the case for instance in a dimensional problem where some parameters have to be optimized for some purpose
- This can equally be the case for an inverse problem in parameter identification.
- The solution u = u(μ) of (1') is sought in some space X for any given parameter μ
- The dependancy in μ of the solution $u(\mu)$ is most often regular.

Basics

A (1) > A (2) > A

$$\mathcal{F}(\boldsymbol{u},\boldsymbol{\mu}) = \boldsymbol{0} \tag{1'}$$

and the parameter μ belongs to R^d (or some brick in R^d)

- This is the case for instance in a dimensional problem where some parameters have to be optimized for some purpose
- This can equally be the case for an inverse problem in parameter identification.
- The solution u = u(μ) of (1') is sought in some space X for any given parameter μ
- The dependancy in μ of the solution $u(\mu)$ is most often regular.

Basics

$$\mathcal{F}(\boldsymbol{u},\boldsymbol{\mu}) = \boldsymbol{0} \tag{1'}$$

and the parameter μ belongs to R^d (or some brick in R^d)

- This is the case for instance in a dimensional problem where some parameters have to be optimized for some purpose
- This can equally be the case for an inverse problem in parameter identification.
- The solution u = u(μ) of (1') is sought in some space X for any given parameter μ
- The dependancy in μ of the solution $u(\mu)$ is most often regular.

$$\mathcal{F}(\boldsymbol{u},\boldsymbol{\mu}) = \boldsymbol{0} \tag{1'}$$

and the parameter μ belongs to R^d (or some brick in R^d)

- This is the case for instance in a dimensional problem where some parameters have to be optimized for some purpose
- This can equally be the case for an inverse problem in parameter identification.
- The solution u = u(μ) of (1') is sought in some space X for any given parameter μ
- The dependancy in μ of the solution $u(\mu)$ is most often regular.

$$\mathcal{F}(u,\mu) = 0 \tag{1'}$$

and the parameter μ belongs to R^d (or some brick in R^d)

- This is the case for instance in a dimensional problem where some parameters have to be optimized for some purpose
- This can equally be the case for an inverse problem in parameter identification.
- The solution u = u(μ) of (1') is sought in some space X for any given parameter μ
- The dependancy in μ of the solution $u(\mu)$ is most often regular.

$$\mathcal{F}(u,\mu) = 0 \tag{1'}$$

and the parameter μ belongs to R^d (or some brick in R^d)

- This is the case for instance in a dimensional problem where some parameters have to be optimized for some purpose
- This can equally be the case for an inverse problem in parameter identification.
- The solution u = u(μ) of (1') is sought in some space X for any given parameter μ
- The dependancy in μ of the solution $u(\mu)$ is most often regular.

- Define X = Span{u(µ), µ ∈ D} then looking for the solution in X instead of X (generally a Sobolev space) is already a valuable indication.....
- In order to apprehend in which sense the good behavior of X should be understood, it is helpfull to introduce the notion of *n*-width following Kolmogorov

- Define X = Span{u(µ), µ ∈ D} then looking for the solution in X instead of X (generally a Sobolev space) is already a valuable indication.....
- In order to apprehend in which sense the good behavior of X should be understood, it is helpfull to introduce the notion of n-width following Kolmogorov

Definition

Let \mathcal{X} be a normed linear space, X be a subset of \mathcal{X} and X_n be a generic *n*-dimensional subspace of \mathcal{X} . The deviation of X from X_n is

$$\mathsf{E}(X;X_n) = \sup_{x\in X} \inf_{y\in X_n} \|x-y\|_{\mathcal{X}}.$$

The Kolmogorov n-width of A in X is given by

 $d_n(X, \mathcal{X}) = \inf\{E(X; X_n) : X_n \text{ an } n \text{-dimensional subspace of } X\}$ = $\inf_{X_n} \sup_{y \in X_n} \inf_{y \in X_n} ||x - y||_{\mathcal{X}}.$ (1)

The *n*-width of X thus measures the extent to which X may be approximated by a *n*-dimensional subspace of \mathcal{X} .

Y. Maday (Paris 6 & Brown)

イロン イ理 とく ヨン イヨン

Definition

Let \mathcal{X} be a normed linear space, X be a subset of \mathcal{X} and X_n be a generic *n*-dimensional subspace of \mathcal{X} . The deviation of X from X_n is

$$\mathsf{E}(X;X_n) = \sup_{x\in X} \inf_{y\in X_n} \|x-y\|_{\mathcal{X}}.$$

The Kolmogorov n-width of A in X is given by

 $d_n(X, \mathcal{X}) = \inf\{E(X; X_n) : X_n \text{ an } n \text{-dimensional subspace of } X\}$ = $\inf_{X_n} \sup_{y \in X_n} \inf_{y \in X_n} ||x - y||_{\mathcal{X}}.$ (1)

The *n*-width of X thus measures the extent to which X may be approximated by a *n*-dimensional subspace of \mathcal{X} .

Y. Maday (Paris 6 & Brown)

Of course X is rarely known but X_n = Span{u(μ_k), k = 1,...,n} where μ_k are properly chosen

- The solution to (1') for other values of μ is then approximated through a Galerkin process.
- The best fit approximation is often exponential in *n* and a random log repartition of the sample values μ_k is often better than other obvious choices.
 - Almroth B.O., Stern P., Brogan F.A.(1978)
 - Noor A.K., Peters J.M.(1980)

• Galerkin approximation is preferable to any kind of extrapolation method.

Of course X is rarely known but X_n = Span{u(μ_k), k = 1,..., n} where μ_k are properly chosen

- The solution to (1') for other values of μ is then approximated through a Galerkin process.
- The best fit approximation is often exponential in *n* and a random log repartition of the sample values μ_k is often better than other obvious choices.
 - Almroth B.O., Stern P., Brogan F.A.(1978)
 - Noor A.K., Peters J.M.(1980)

• Galerkin approximation is preferable to any kind of extrapolation method.

- Of course X is rarely known but X_n = Span{u(μ_k), k = 1,..., n} where μ_k are properly chosen
- The solution to (1') for other values of μ is then approximated through a Galerkin process.
- The best fit approximation is often exponential in *n* and a random log repartition of the sample values μ_k is often better than other obvious choices.
 - Almroth B.O., Stern P., Brogan F.A.(1978)
 - Noor A.K., Peters J.M.(1980)

• Galerkin approximation is preferable to any kind of extrapolation method.

イロト イ団ト イヨト イヨト

- Of course X is rarely known but X_n = Span{u(μ_k), k = 1,..., n} where μ_k are properly chosen
- The solution to (1') for other values of μ is then approximated through a Galerkin process.
- The best fit approximation is often exponential in *n* and a random log repartition of the sample values μ_k is often better than other obvious choices.
 - Almroth B.O., Stern P., Brogan F.A.(1978)
 - Noor A.K., Peters J.M.(1980)
- Galerkin approximation is preferable to any kind of extrapolation method.

イロト イ団ト イヨト イヨト

- Of course X is rarely known but X_n = Span{u(μ_k), k = 1,..., n} where μ_k are properly chosen
- The solution to (1') for other values of μ is then approximated through a Galerkin process.
- The best fit approximation is often exponential in *n* and a random log repartition of the sample values μ_k is often better than other obvious choices.
 - Almroth B.O., Stern P., Brogan F.A.(1978)Noor A.K., Peters J.M.(1980)
- Galerkin approximation is preferable to any kind of extrapolation method.

- Of course X is rarely known but X_n = Span{u(μ_k), k = 1,..., n} where μ_k are properly chosen
- The solution to (1') for other values of μ is then approximated through a Galerkin process.
- The best fit approximation is often exponential in *n* and a random log repartition of the sample values μ_k is often better than other obvious choices.
 - Almroth B.O., Stern P., Brogan F.A.(1978)
 Noor A.K., Peters J.M.(1980)
- Galerkin approximation is preferable to any kind of extrapolation method.

イロン イ理 とくほ とくほ とう

- Of course X is rarely known but X_n = Span{u(μ_k), k = 1,..., n} where μ_k are properly chosen
- The solution to (1') for other values of μ is then approximated through a Galerkin process.
- The best fit approximation is often exponential in *n* and a random log repartition of the sample values μ_k is often better than other obvious choices.
 - Almroth B.O., Stern P., Brogan F.A.(1978)
 - Noor A.K., Peters J.M.(1980)
- Galerkin approximation is preferable to any kind of extrapolation method.

- Framework of the approach
- Parameter dependent problems
- An example
- Application to fluid flows

Application to a non affine elliptic problem

We are interested in solving

$$-\Delta u + \mu_1 \frac{e^{\mu_2 u} - 1}{\mu_2} = f$$

the results with the interpolation process are

N	4	8	12	16	20
$\varepsilon^{u}_{N,M,\max}$	6.53 E-03	1.05 E-03	7.34 E-05	1.30 E-05	5.05 E-06
$\eta_{N,M}^{u}$	1.94	2.16	2.33	2.36	1.21

We are interested in solving

$$\frac{\partial u}{\partial t} - \Delta u + \mu_1 \frac{e^{\mu_2 u} - 1}{\mu_2} = f$$

the reduced basis considers 3 parameters $\mu_1, \mu_2, t...$ results are similar

N	1	5	10	20	30
$\varepsilon^{u}_{N,M,\max}$	3.82 E-01	1.36 E-02	1.62 E-03	1.46 E-04	1.88 E-05
$\eta_{N,M}^{u}$	79	25.9	8.65	8.25	3.82

Similarly as for the spectral method $u(\mu)$ approximated by a sum of $u(\mu_i)$: e.g. $\exp(u)$

- we use the reduced basis $\exp(u(\mu_i)), \rightarrow W_N^{exp}$
- we select the representative collocation points
- we represent $\exp(u(., \mu))$ by its interpolation over W_N^{exp}
- i.e. let $u(., \mu)$ be approximated by $\sum_{j} \alpha_{j} u(\mu_{j})$, then $\exp(u(., \mu))$ will be approximated by $\sum_{j} \beta_{j} \exp(u(\mu_{j}))$, where the β 's are tuned so that

$$\exp(\sum_{j} \alpha_{j} u(\mu_{j}))(t_{k}) = \sum_{j} \beta_{j} \exp(u(\mu_{j}))(t_{k})$$

Similarly as for the spectral method $u(\mu)$ approximated by a sum of $u(\mu_i)$: e.g. exp(u)

- we use the reduced basis $\exp(u(\mu_i)), \rightarrow W_N^{exp}$
- we select the representative collocation points
- we represent $\exp(u(., \mu))$ by its interpolation over W_N^{exp}
- i.e. let $u(., \mu)$ be approximated by $\sum_j \alpha_j u(\mu_j)$, then $\exp(u(., \mu))$ will be approximated by $\sum_j \beta_j \exp(u(\mu_j))$, where the β 's are tuned so that

$$\exp(\sum_{j} \alpha_{j} u(\mu_{j}))(t_{k}) = \sum_{j} \beta_{j} \exp(u(\mu_{j}))(t_{k})$$

Similarly as for the spectral method $u(\mu)$ approximated by a sum of $u(\mu_i)$: e.g. exp(u)

- we use the reduced basis $\exp(u(\mu_i)), \rightarrow W_N^{exp}$
- we select the representative collocation points
- we represent $\exp(u(., \mu))$ by its interpolation over W_N^{exp}
- i.e. let $u(., \mu)$ be approximated by $\sum_j \alpha_j u(\mu_j)$, then $\exp(u(., \mu))$ will be approximated by $\sum_j \beta_j \exp(u(\mu_j))$, where the β 's are tuned so that

$$\exp(\sum_{j} \alpha_{j} u(\mu_{j}))(t_{k}) = \sum_{j} \beta_{j} \exp(u(\mu_{j}))(t_{k})$$

▲ @ ▶ ▲ ⊇ ▶ ▲

Similarly as for the spectral method $u(\mu)$ approximated by a sum of $u(\mu_i)$: e.g. exp(u)

- we use the reduced basis $\exp(u(\mu_i)), \rightarrow W_N^{exp}$
- we select the representative collocation points
- we represent $\exp(u(., \mu))$ by its interpolation over W_N^{exp}
- i.e. let $u(., \mu)$ be approximated by $\sum_j \alpha_j u(\mu_j)$, then $\exp(u(., \mu))$ will be approximated by $\sum_j \beta_j \exp(u(\mu_j))$, where the β 's are tuned so that

$$\exp(\sum_{j} \alpha_{j} u(\mu_{j}))(t_{k}) = \sum_{j} \beta_{j} \exp(u(\mu_{j}))(t_{k})$$

- ₹ ∃ →

Similarly as for the spectral method $u(\mu)$ approximated by a sum of $u(\mu_i)$: e.g. $\exp(u)$

- we use the reduced basis $\exp(u(\mu_i)), \rightarrow W_N^{exp}$
- we select the representative collocation points
- we represent $\exp(u(., \mu))$ by its interpolation over W_N^{exp}

i.e. let $u(., \mu)$ be approximated by $\sum_{j} \alpha_{j} u(\mu_{j})$, then $\exp(u(., \mu))$ will be approximated by $\sum_{j} \beta_{j} \exp(u(\mu_{j}))$, where the β 's are tuned so that

$$\exp(\sum_{j} \alpha_{j} u(\mu_{j}))(t_{k}) = \sum_{j} \beta_{j} \exp(u(\mu_{j}))(t_{k})$$

▲ 御 ▶ ▲ 臣 ▶ ▲

Similarly as for the spectral method $u(\mu)$ approximated by a sum of $u(\mu_i)$: e.g. exp(u)

- we use the reduced basis $\exp(u(\mu_i)), \rightarrow W_N^{exp}$
- we select the representative collocation points
- we represent $\exp(u(., \mu))$ by its interpolation over W_N^{exp}

i.e. let $u(., \mu)$ be approximated by $\sum_{j} \alpha_{j} u(\mu_{j})$, then $\exp(u(., \mu))$ will be approximated by $\sum_{j} \beta_{j} \exp(u(\mu_{j}))$, where the β 's are tuned so that

$$\exp(\sum_{j} \alpha_{j} u(\mu_{j}))(t_{k}) = \sum_{j} \beta_{j} \exp(u(\mu_{j}))(t_{k})$$

Similarly as for the spectral method $u(\mu)$ approximated by a sum of $u(\mu_i)$: e.g. exp(u)

- we use the reduced basis $\exp(u(\mu_i)), \rightarrow W_N^{exp}$
- we select the representative collocation points
- we represent $\exp(u(., \mu))$ by its interpolation over W_N^{exp}

i.e. let $u(., \mu)$ be approximated by $\sum_{j} \alpha_{j} u(\mu_{j})$, then $\exp(u(., \mu))$ will be approximated by $\sum_{j} \beta_{j} \exp(u(\mu_{j}))$, where the β 's are tuned so that

$$\exp(\sum_{j} \alpha_{j} u(\mu_{j}))(\mathbf{t}_{k}) = \sum_{j} \beta_{j} \exp(u(\mu_{j}))(\mathbf{t}_{k})$$

$$u(\mu) = \operatorname{Arg} \inf_{\int u^2 = 1} E(u, \mu)$$

where

$$\mathsf{E}(u,\mu) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx dy + \int_{\Omega} \mathsf{V}(.,\mu) u^2 dx dy + \int_{\Omega} \int_{\Omega} \frac{u^2(x) u^2(y)}{|x-y|} dx dy$$

With the potential

$$V(x, y, \mu) = \frac{\mu_2}{\sqrt{(x + \mu_1/2)^2 + y^2}} + \frac{\mu_2}{\sqrt{(x - \mu_1/2)^2 + y^2)}}$$

Y. Maday (Paris 6 & Brown)

< ≣ ► ≣ ৩৭০ Paris 2006 35 / 58

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
Some first results in QC

Figure: Different distances between the nuclei.

Y. Maday (Paris 6 & Brown)

Reduced basis methods

Paris 2006 36 / 58

Some first results in QC

Figure: Different distances between the nuclei.

Y. Maday (Paris 6 & Brown)

Reduced basis methods

Paris 2006 37 / 58

Some first results in QC

Figure: Different distances between the nuclei.

Y. Maday (Paris 6 & Brown)

Reduced basis methods

Paris 2006 38 / 58

The ground state for the Kohn Sham model $\hat{\mathbf{u}}_{o}([Z, \mu^*]) \equiv (u_{o 1}, \dots, u_{o n_{e}}),$

$$\hat{\mathbf{u}}_{o}([Z,\mu]) = \arg \inf_{\hat{\mathbf{w}}_{o}} \Big\{ E_{o}(\hat{\mathbf{w}}_{o} \equiv (w_{o 1}, \dots, w_{o n_{e}}); [Z,\mu]), w_{o,i} \in Y_{o}, (2)$$

$$\int_{\Omega_{o}(\mu)} w_{o i} w_{o j} = \delta_{ij}, 1 \leq i, j \leq n_{e} \Big\},$$

$$\mu^{*}(Z) = \arg \inf_{\mu} \big\{ \mathcal{E}_{o}(\hat{\mathbf{u}}_{o}([Z,\mu]); [Z,\mu]); \mu > 0 \big\};$$

$$(3)$$

with $Y_{\rm o} \equiv H_{\rm per}^1(\Omega_{\rm o}(\mu))$

Reduced Basis Formulation for Kohn Sham Equations

and the electronic energy $E_{o}(\hat{\mathbf{w}}_{o}; [Z, \mu])$ is defined as

$$\begin{split} E_{o}(\hat{\mathbf{w}}_{o};[Z,\mu]) &= C_{w} \sum_{i=1}^{n_{e}} \int_{\Omega_{o}(\mu)} (\nabla w_{o\,i})^{2} - Z \sum_{i=1}^{n_{e}} \int_{\Omega_{o}(\mu)} G_{o} w_{o\,i}^{2} \\ &+ \frac{1}{2} C_{c} \int_{\Omega_{o}(\mu)} \int_{\Omega_{o}(\mu)} \left(\sum_{i=1}^{n_{e}} w_{o\,i}^{2}(y_{1}) \right) \ G_{o}(y_{1} - y_{2}) \ \left(\sum_{j=1}^{n_{e}} w_{o\,j}^{2}(y_{2}) \right) \ dy_{1} \ dy_{1} \\ &- C_{x} \sum_{i=1}^{n_{e}} \int_{\Omega_{o}(\mu)} \left(\sum_{j=1}^{n_{e}} w_{o\,j}^{2} \right)^{4/3} w_{o\,i}^{2}, \end{split}$$

the periodic Green's function $G_{o}(\cdot;\mu)$: $\Omega_{o}(\mu) \rightarrow R$ satisfies $-\Delta G_{o} = \left\{ \delta(y) - \frac{1}{|\Omega_{o}(\mu)|} \right\}, \int_{\Omega_{o}(\mu)} G_{o} = 0, |\Omega_{o}(\mu)| = \mu \text{ is a nucleus geometric parameter.}$

N ^u	ε μ ,Μ	$\varepsilon^{\mathcal{E}}_{N,M}$	$\varepsilon^{\phi}_{N,M}$	$\varepsilon_{N,M}^{\text{ortho}}$
5	7.9044E-2	4.6557E-04	1.4647E+0	5.1756E-14
6	4.5693E-2	3.5279E-05	1.2839E-1	3.6342E-3
7	2.1383E-4	1.3947E-09	1.0334E-3	2.1783E-5
8	9.8819E-5	8.8168E-10	3.7635E-4	$1.0686 \mathrm{E}{-5}$
9	9.7602E-6	3.0509E-10	3.8463E-5	8.9840E-7

Table: Variations of the reduced-basis errors $\varepsilon_{N,M}^{u}$, $\varepsilon_{N,M}^{\mathcal{E}}$, $\varepsilon_{N,M}^{\phi}$, $\varepsilon_{N,M}^{ortho}$ with N^{u} . Here, $n_{e} = 5$ and $1.5 \le \mu \le 5.5$.

here it is not only but

$$orall n \leq n_{ heta}, \quad u_{n}(\mu) \simeq \sum_{i=1}^{N} lpha_{i} u_{n}(\mu_{i})$$

with α_i independant of n

so that the complexity scales with N and not with $n_e imes N$

here it is not only but

$$\forall n \leq n_{e}, \quad u_{n}(\mu) \simeq \sum_{i=1}^{N} \alpha_{i} u_{n}(\mu_{i})$$

with α_i independant of n

so that the complexity scales with N and not with $n_e imes N$

here it is not only but

$$\forall n \leq n_{e}, \quad u_{n}(\mu) \simeq \sum_{i=1}^{N} \alpha_{i} u_{n}(\mu_{i})$$

with α_i independent of *n*

so that the complexity scales with *N* and not with $n_e \times N$

Reduced Basis Formulation for Kohn Sham Equations

Figure: Convergence of reduced basis error in the vectorial case for $2 \le n_e \le 8$.

Figure: A first geometry.

< A

Figure: A second geometry.

- 4 – 5

Figure: A third geometry.

- 4 – 5

Figure: A fourth geometry.

- 4 – 5

-

This gives basis functions $\hat{\zeta}_1, \hat{\zeta}_2, ..., \hat{\zeta}_N$, supposed to be linearly independent

These basics solutions are mapped over each Ω_k^{bb} through φ_k . The solution corresponding to an unknown, deformed geometry is then represented as a linear combination of these mapped solutions

$$Y_N = \{ v_N \in L^2(\Omega) | \quad v_{N \mid \Omega_k^{bb}} \circ \varphi_k \in \operatorname{span}\{\hat{\zeta}_1, \hat{\zeta}_2, ..., \hat{\zeta}_N\} \} .$$

Note that Y_N is not an acceptable discretization space for $H^1(\Omega)$, the matching between the different subdomains is ensured through the use of Lagrange multipliers

As a precomputation, the problem of interest is solved over various deformations of each reference building block and stored, after mapping, on the reference building block. This gives basis functions $\hat{\zeta}_1, \hat{\zeta}_2, ..., \hat{\zeta}_N$, supposed to be linearly independent

These basics solutions are mapped over each Ω_k^{bb} through φ_k . The solution corresponding to an unknown, deformed geometry is then represented as a linear combination of these mapped solutions

$$Y_N = \{ v_N \in L^2(\Omega) | \quad v_{N \mid \Omega_k^{bb}} \circ \varphi_k \in \operatorname{span}\{\hat{\zeta}_1, \hat{\zeta}_2, ..., \hat{\zeta}_N\} \} .$$

Note that Y_N is not an acceptable discretization space for $H^1(\Omega)$, the matching between the different subdomains is ensured through the use of Lagrange multipliers

As a precomputation, the problem of interest is solved over various deformations of each reference building block and stored, after mapping, on the reference building block. This gives basis functions $\hat{\zeta}_1, \hat{\zeta}_2, ..., \hat{\zeta}_N$, supposed to be linearly independent

These basics solutions are mapped over each Ω_k^{bb} through φ_k . The solution corresponding to an unknown, deformed geometry is then represented as a linear combination of these mapped solutions

$$Y_N = \{ v_N \in L^2(\Omega) | \quad v_{N \mid \Omega_k^{bb}} \circ \varphi_k \in \operatorname{span}\{\hat{\zeta}_1, \hat{\zeta}_2, ..., \hat{\zeta}_N\} \} .$$

Note that Y_N is not an acceptable discretization space for $H^1(\Omega)$, the matching between the different subdomains is ensured through the use of Lagrange multipliers

This gives basis functions $\hat{\zeta}_1, \hat{\zeta}_2, ..., \hat{\zeta}_N$, supposed to be linearly independent

These basics solutions are mapped over each Ω_k^{bb} through φ_k . The solution corresponding to an unknown, deformed geometry is then represented as a linear combination of these mapped solutions

$Y_N = \{ v_N \in L^2(\Omega) | \quad v_{N \mid \Omega_k^{bb}} \circ \varphi_k \in \operatorname{span}\{\hat{\zeta}_1, \hat{\zeta}_2, ..., \hat{\zeta}_N\} \} .$

Note that Y_N is **not** an acceptable discretization space for $H^1(\Omega)$, the matching between the different subdomains is ensured through the use of Lagrange multipliers

< 日 > < 同 > < 回 > < 回 > < 回 > <

This gives basis functions $\hat{\zeta}_1, \hat{\zeta}_2, ..., \hat{\zeta}_N$, supposed to be linearly independent

These basics solutions are mapped over each Ω_k^{bb} through φ_k . The solution corresponding to an unknown, deformed geometry is then represented as a linear combination of these mapped solutions

$$Y_{N} = \{ v_{N} \in L^{2}(\Omega) | \quad v_{N \mid \Omega_{k}^{bb}} \circ \varphi_{k} \in \operatorname{span}\{\hat{\zeta}_{1}, \hat{\zeta}_{2}, ..., \hat{\zeta}_{N} \} \} .$$

Note that Y_N is **not** an acceptable discretization space for $H^1(\Omega)$, the matching between the different subdomains is ensured through the use of Lagrange multipliers

< 日 > < 同 > < 回 > < 回 > < 回 > <

This gives basis functions $\hat{\zeta}_1, \hat{\zeta}_2, ..., \hat{\zeta}_N$, supposed to be linearly independent

These basics solutions are mapped over each Ω_k^{bb} through φ_k . The solution corresponding to an unknown, deformed geometry is then represented as a linear combination of these mapped solutions

$$Y_{N} = \{ v_{N} \in L^{2}(\Omega) | \quad v_{N \mid \Omega_{k}^{bb}} \circ \varphi_{k} \in \operatorname{span}\{\hat{\zeta}_{1}, \hat{\zeta}_{2}, ..., \hat{\zeta}_{N} \} \} .$$

Note that Y_N is not an acceptable discretization space for $H^1(\Omega)$, the matching between the different subdomains is ensured through the use of Lagrange multipliers

イロン イ理 とく ヨン・

$$X_N = \{ v \in Y_N^1, \quad \forall k, \ell, \quad \forall \psi \in W_{k,\ell}, \int_{\Gamma_{k,\ell}^{\Theta}} (v^+ - v^-) \psi \, ds = 0 \},$$

where $W_{k,\ell}$ is some well chosen space over $\Gamma_{k,\ell}^e \rightarrow$ nonconforming approximation.

The discrete problem then reads : Find u_N in X_N such that

$$a(u_N, v_N) = f(v_N), \quad \forall v_N \in X_N.$$

< □ > < □ > < □ > < □ >

$$X_N = \{ v \in Y_N^1, \quad \forall k, \ell, \quad \forall \psi \in W_{k,\ell}, \int_{\Gamma_{k,\ell}^{\Theta}} (v^+ - v^-) \psi \, ds = 0 \},$$

where $W_{k,\ell}$ is some well chosen space over $\Gamma_{k,\ell}^e \rightarrow$ nonconforming approximation.

The discrete problem then reads : Find u_N in X_N such that

$$a(u_N, v_N) = f(v_N), \quad \forall v_N \in X_N.$$

A (10) F (10)

$$X_N = \{ v \in Y_N^1, \quad \forall k, \ell, \quad \forall \psi \in W_{k,\ell}, \int_{\Gamma_{k,\ell}^e} (v^+ - v^-) \psi \ ds = 0 \},$$

where $W_{k,\ell}$ is some well chosen space over $\Gamma_{k,\ell}^e \rightarrow$ nonconforming approximation.

The discrete problem then reads : Find u_N in X_N such that

$$a(u_N, v_N) = f(v_N), \quad \forall v_N \in X_N.$$

A (10) F (10)

$$X_N = \{ v \in Y_N^1, \quad \forall k, \ell, \quad \forall \psi \in W_{k,\ell}, \int_{\Gamma_{k,\ell}^e} (v^+ - v^-) \psi \ ds = 0 \},$$

where $W_{k,\ell}$ is some well chosen space over $\Gamma_{k,\ell}^e \rightarrow$ nonconforming approximation.

The discrete problem then reads : Find u_N in X_N such that

$$a(u_N, v_N) = f(v_N), \quad \forall v_N \in X_N .$$

$$X_N = \{ v \in Y_N^1, \quad \forall k, \ell, \quad \forall \psi \in W_{k,\ell}, \int_{\Gamma_{k,\ell}^e} (v^+ - v^-) \psi \ ds = 0 \},$$

where $W_{k,\ell}$ is some well chosen space over $\Gamma_{k,\ell}^e \rightarrow$ nonconforming approximation.

The discrete problem then reads : Find u_N in X_N such that

$$a(u_N, v_N) = f(v_N), \quad \forall v_N \in X_N.$$

Fremowork of the

- Framework of the approach
- Parameter dependent problems
- An example
- Application to fluid flows

For flow problems the tranformations between the reference domain and the subdomains are more involved: The PIOLA Transform that allow the work with divergence free discrete spaces

$$\hat{u} = \mathcal{J}^{-1}(u \circ \Phi)|J|,$$

 \rightarrow The velocity is computed independently of the pressure

A (1) > A (2) > A

For flow problems the tranformations between the reference domain and the subdomains are more involved: The PIOLA Transform that allow the work with divergence free discrete spaces

$$\hat{u} = \mathcal{J}^{-1}(u \circ \Phi)|J|,$$

ightarrow The velocity is computed independently of the pressure

For flow problems the tranformations between the reference domain and the subdomains are more involved: The PIOLA Transform that allow the work with divergence free discrete spaces

$$\hat{u} = \mathcal{J}^{-1}(u \circ \Phi)|J|,$$

 \rightarrow The velocity is computed independently of the pressure

Fluid flows

Y. Maday (Paris 6 & Brown)

Reduced basis methods

Paris 2006 5

52 / 58

Fluid flows

Figure: Error distribution for a new configuration $N_P = 15$, $N_B = 15$ error plot for the pressure max =3.10⁻², for the velocity error $\simeq 3.10^{-3}$.

Y. Maday (Paris 6 & Brown)

Reduced basis methods

Fluid flows

Figure: Error distribution for a new configuration $N_P = 15$, $N_B = 30$ error plot for the pressure max=6.10⁻³, for the velocity error $\simeq 4.10^{-4}$, size problem $\sim \infty$

Y. Maday (Paris 6 & Brown)

Reduced basis methods

Figure: A stenosis problem with $N_P = 15$, $N_B = 15$.

Figure: A stenosis problem with $N_P = 15$, $N_B = 30$.

Y. Maday (Paris 6 & Brown)

Reduced basis methods

Paris 2006 56 / 58

N	<i>N</i> ₁	<i>N</i> ₂	$ u_N - u _{H^1}$	$ p_N - p _{L^2}$
45	9	9	9.3 · 10 ⁻³	3.3 · 10
55	11	11	3.1 · 10 ^{−3}	5.3 · 10 ⁻¹
65	13	13	2.3 · 10 ^{−3}	9.0 · 10 ^{−2}
75	15	15	1.4 · 10 ^{−3}	5.3 · 10 ⁻²
105	15	30	$5.4 \cdot 10^{-4}$	$3.0 \cdot 10^{-2}$

Table: Steady Stokes solution on a multi-block bypass with three pipe blocks and two bifurcation blocks. Here, $N = 3N_1 + 2N_2$.

• • • • • • • • • • • • •

Important remarks....

- Note that contrarily to what happens in the parameter dependant problem
- The full problem over the global geometry is never constructed in the reduced element method
- This is a major achievement

• Note also that, more generally, the reduced basis functions have to be suitably prepared

 Finally, do not forget that off-line pre-computations have to be done, involving your favorit approximation method, and that the approach is rapid for online computations.
- Note that contrarily to what happens in the parameter dependant problem
- The full problem over the global geometry is never constructed in the reduced element method
- This is a major achievement

• Note also that, more generally, the reduced basis functions have to be suitably prepared

• Finally, do not forget that off-line pre-computations have to be done, involving your favorit approximation method, and that the approach is rapid for online computations.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Note that contrarily to what happens in the parameter dependant problem
- The full problem over the global geometry is never constructed in the reduced element method
- This is a major achievement

 Note also that, more generally, the reduced basis functions have to be suitably prepared

 Finally, do not forget that off-line pre-computations have to be done, involving your favorit approximation method, and that the approach is rapid for online computations.

イロト イ団ト イヨト イヨト

- Note that contrarily to what happens in the parameter dependant problem
- The full problem over the global geometry is never constructed in the reduced element method
- This is a major achievement

 Note also that, more generally, the reduced basis functions have to be suitably prepared

 Finally, do not forget that off-line pre-computations have to be done, involving your favorit approximation method, and that the approach is rapid for online computations.

イロト イ団ト イヨト イヨト

- Note that contrarily to what happens in the parameter dependant problem
- The full problem over the global geometry is never constructed in the reduced element method
- This is a major achievement

 Note also that, more generally, the reduced basis functions have to be suitably prepared

 Finally, do not forget that off-line pre-computations have to be done, involving your favorit approximation method, and that the approach is rapid for online computations.

イロト イ押ト イヨト イヨト