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Framework of the approach.
Basics on approximation

A lot of problems we have to face in numerical analysis and
scientific computing: find u such that

F(u) = 0 (1)

can actually be written under a variational form : find u ∈ X such
that

A(u, v) =< f , v >, ∀v ∈ X̃ (2)

Where X and X̃ are some coherent Banach spaces, A is an
appropriate form, linear in v , and f is a given linear form.
For time dependent problem one may specify even : find
u,∀t ,u(t , ; ) ∈ X such that

m(
∂u
∂t
, v) +A(u, v) =< f , v >, ∀v ∈ X̃ (2′)
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Framework of the approach.
Basics on approximation

The coherence in X and X̃ is expressed through a condition in terms
of A that, for linear problems, involves, e.g.

the Lax Milgram theorem (then X = X̃ ) or
the Babuška-Brezzi condition.....

that makes explicit conditions under which the problem is well posed :
i.e. there exists a unique solution u to problem (1).

For nonlinear problems the conditions are various and more involved.
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Framework of the approach.
Basics on approximation

The approximation can now proceed. Two families of finite dimensional
spaces {Xn}n and {X̃n}n are provided, that maintain the above
mentioned coherence.
and the discrete space reads : find un ∈ Xn such that

An(un, vn) =< f n, vn >, ∀vn ∈ X̃n (2n)

or again for time dependent problems : find un,∀t ,un(t , ; ) ∈ Xn such
that

mn(
∂un

∂t
, vn) +An(un, vn) =< f n, vn >, ∀vn ∈ X̃n (2′n)

most often further numerical quadratures are involved leading to
slightly modified discrete problems
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Framework of the approach.
Basics on approximation

All the art of the numerical analyst or the specialist of scientific
computing tends to define the discrete spaces Xn and X̃n ... and also
An.... in such a way that

The discrete solutions un exist and are unique
An error bound ‖u − uN‖X ≤ c infwn∈Xn ‖u − wN‖X can be derived
The best fit, infwn∈Xn ‖u − wN‖X , goes to zero rapidly
The effective computation of un is easy enough
An a posteriori error providing the size of ‖u − uN‖X is available
An a posteriori indicator telling what to do to improve ‖u − uN‖X is
available
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Framework of the approach.
High order methods

Spectral and spectral element methods Xn are based on high
order polynomial expansions
Nonlinear approximations/ multiresolution analysis Xn are based
on wavelet approximations
Reduced basis Xn are based on previously computed solutions
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Spectral methods.
in one dimension

For any integer N, IPN is the set of all polynomials of degree ≤ N
Classical approximation results are known in C0–norm and reveal
infinite order accuracy
We are interested in Sobolev norms:

H1 = {v ∈ L2, v ′ ∈ L2}

H r = {v ∈ L2, v ′ ∈ H r−1}

infvN ‖u − vN‖H1 ≤ cN1−r‖u‖H r
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Spectral methods.
in 2 and 3 dimensions

For any integer N, IPN is the set of all polynomials of partial
degree ≤ N
The approximation results can be extended

H1 = {v ∈ L2, ∇v ∈ L2}

H r = {v ∈ L2, ∇v ∈ H r−1}

infvN ‖u − vN‖H1 ≤ cN1−r‖u‖H r

Y. Maday (Paris 6 & Brown) Reduced basis methods Paris 2006 9 / 58



Spectral methods.
in 2 and 3 dimensions

For any integer N, IPN is the set of all polynomials of partial
degree ≤ N
The approximation results can be extended

H1 = {v ∈ L2, ∇v ∈ L2}

H r = {v ∈ L2, ∇v ∈ H r−1}

infvN ‖u − vN‖H1 ≤ cN1−r‖u‖H r

Y. Maday (Paris 6 & Brown) Reduced basis methods Paris 2006 9 / 58



Spectral methods.
in 2 and 3 dimensions

For any integer N, IPN is the set of all polynomials of partial
degree ≤ N
The approximation results can be extended

H1 = {v ∈ L2, ∇v ∈ L2}

H r = {v ∈ L2, ∇v ∈ H r−1}

infvN ‖u − vN‖H1 ≤ cN1−r‖u‖H r

Y. Maday (Paris 6 & Brown) Reduced basis methods Paris 2006 9 / 58



Spectral methods.
in 2 and 3 dimensions

For any integer N, IPN is the set of all polynomials of partial
degree ≤ N
The approximation results can be extended

H1 = {v ∈ L2, ∇v ∈ L2}

H r = {v ∈ L2, ∇v ∈ H r−1}

infvN ‖u − vN‖H1 ≤ cN1−r‖u‖H r

Y. Maday (Paris 6 & Brown) Reduced basis methods Paris 2006 9 / 58



Spectral methods.
in 2 and 3 dimensions

For any integer N, IPN is the set of all polynomials of partial
degree ≤ N
The approximation results can be extended

H1 = {v ∈ L2, ∇v ∈ L2}

H r = {v ∈ L2, ∇v ∈ H r−1}

infvN ‖u − vN‖H1 ≤ cN1−r‖u‖H r

Y. Maday (Paris 6 & Brown) Reduced basis methods Paris 2006 9 / 58



Spectral methods.
in 2 and 3 dimensions

For any integer N, IPN is the set of all polynomials of partial
degree ≤ N
The approximation results can be extended

H1 = {v ∈ L2, ∇v ∈ L2}

H r = {v ∈ L2, ∇v ∈ H r−1}

infvN ‖u − vN‖H1 ≤ cN1−r‖u‖H r

Y. Maday (Paris 6 & Brown) Reduced basis methods Paris 2006 9 / 58



Spectral methods.
in 2 and 3 dimensions

For any integer N, IPN is the set of all polynomials of partial
degree ≤ N
The approximation results can be extended

H1 = {v ∈ L2, ∇v ∈ L2}

H r = {v ∈ L2, ∇v ∈ H r−1}

infvN ‖u − vN‖H1 ≤ cN1−r‖u‖H r

Y. Maday (Paris 6 & Brown) Reduced basis methods Paris 2006 9 / 58



Spectral methods.
Definition of the problem

Consider the Navier Stokes problem
Find u and p such that

∂u
∂t

− ν∆u + u∇u +∇p = f

div(u) = 0

Variational formulation∫
Ω

∂u
∂t

v +

∫
Ω
∇u∇v +

∫
Ω

u∇uv−
∫

Ω
pdiv(v) =

∫
Ω

fv

the spectral approximation : find uN and pN such that∫
Ω

∂uN

∂t
vN +

∫
Ω
∇uN∇vN +

∫
Ω

uN∇uNvN −
∫

Ω
pNdiv(vN) =

∫
Ω

fvN
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Variational formulation∫
Ω

∂u
∂t

v +

∫
Ω
∇u∇v +

∫
Ω

u∇uv−
∫

Ω
pdiv(v) =

∫
Ω

fv

the spectral approximation : find uN and pN such that∫
Ω

∂uN

∂t
vN +

∫
Ω
∇uN∇vN +

∫
Ω

uN∇uNvN −
∫

Ω
pNdiv(vN) =

∫
Ω

fvN
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Spectral methods.
Coherent spaces

∫
Ω

∂uN

∂t
vN +

∫
Ω
∇uN∇vN +

∫
Ω

uN∇uNvN −
∫

Ω
pNdiv(vN) =

∫
Ω

fvN

∫
Ω

qNdiv(uN) = 0

the degrees of uN and pN cannot be the same.... spurious pressure
modes
degree of uN = N (idem for vN ) and degree of pN = N − 2 (idem for
qN ) leads to a unique solution
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Spectral methods.
Efficient implementation

The nonlinear contribution
∫
Ω uN∇uNvN is a problem from the

computational point of view
We need to evaluate these contribution efficiently: the idea is to
make use of a numerical integration that should not destroy the
accuracy : Gauss type formula∫

Ω uN∇uNvN is evaluated by
∑

i,j uN(ξij)∇uN(ξij)vN(ξij)ωij
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Spectral methods.
Extension to curved domains

Figure: The domain of interest is obtained as a regular deformation of the
square
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Spectral methods.
Domain decomposition

Figure: The domain of interest is decomposed into a union of nonoverlapping
deformed squares
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Spectral methods.
Domain decomposition

This non overlapping domain decomposition Ω = ∪Ωk allows to write
simply the integral over Ω as a sum of integrals over each of the
subdomains Ωk .

K∑
k=1

∑
i,j

∂uN

∂t
vN(ξk

ij )ω
k
ij +

K∑
k=1

∑
i,j

∇uNvN(ξk
ij )ω

k
ij ....

This way, we do not have to wonder about the matching, only
continuity is imposed at the interfaces
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Spectral methods.
Non matching domain decomposition

This variational formulation + numerical integration + non overlapping
DD allows also to be able to use different polynomial degree in each
subdomain

Figure: non matching grids treated by the mortar element method, by Y.
Capdeville, E. Chaljub, J.P. Vilotte, J.P. Montagner
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Spectral methods.
Non regular solutions

If the solution to be approximated is only piecewise regular but globally
discontinuous
Spectral approximations lead to furious oscillations.... but a post
treatment is possible

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.5

1

1.5
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2.5
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5

Figure: The solution before post processing, from S.M. Kaber
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Spectral methods.
Non regular solutions
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Spectral methods.
Non regular solutions
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Spectral methods.
Non regular solutions
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Reduced Basis Methods.
What reduced basis method propose

Here what we want to use is an a priori knowledge of a reduced space
X much smaller than X where the solution to (1) should be sought
We present here two classes of problems where this strategy can be
used

parameter dependent problems
hierarchical geometry for the domain

in both cases the space X is conceived from the use of a more
standard approximation methods you do not have to forget your
favorite method... it is more the opposite in a first step
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Outline

1 Motivation
Framework of the approach
Parameter dependent problems
An example
Application to fluid flows
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Parameter dependent problems.
Basics

Let us consider a class of problems depending on some parameters:

F(u, µ) = 0 (1′)

and the parameter µ belongs to IRd (or some brick in IRd )
This is the case for instance in a dimensional problem where
some parameters have to be optimized for some purpose
This can equally be the case for an inverse problem in parameter
identification.
The solution u = u(µ) of (1’) is sought in some space X for any
given parameter µ
The dependancy in µ of the solution u(µ) is most often regular.
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Parameter dependent problems.
The reduced basis space and approximation

Define X = Span{u(µ), µ ∈ D} then looking for the solution in X
instead of X (generally a Sobolev space) is already a valuable
indication.....
In order to apprehend in which sense the good behavior of X
should be understood, it is helpfull to introduce the notion of
n-width following Kolmogorov

Y. Maday (Paris 6 & Brown) Reduced basis methods Paris 2006 28 / 58



Parameter dependent problems.
The reduced basis space and approximation

Define X = Span{u(µ), µ ∈ D} then looking for the solution in X
instead of X (generally a Sobolev space) is already a valuable
indication.....
In order to apprehend in which sense the good behavior of X
should be understood, it is helpfull to introduce the notion of
n-width following Kolmogorov

Y. Maday (Paris 6 & Brown) Reduced basis methods Paris 2006 28 / 58



Parameter dependent problems.
The reduced basis space and approximation

Definition
Let X be a normed linear space, X be a subset of X and Xn be a
generic n-dimensional subspace of X . The deviation of X from Xn is

E(X ; Xn) = sup
x∈X

inf
y∈Xn

‖x − y‖X .

The Kolmogorov n-width of A in X is given by

dn(X ,X ) = inf{E(X ; Xn) : Xn an n-dimensional subspace of X}
= inf

Xn
sup
x∈X

inf
y∈Xn

‖x − y‖X . (1)

The n-width of X thus measures the extent to which X may be
approximated by a n-dimensional subspace of X .
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Parameter dependent problems.
The reduced basis space and approximation

Of course X is rarely known but Xn = Span{u(µk ), k = 1, ...,n}
where µk are properly chosen
The solution to (1’) for other values of µ is then approximated
through a Galerkin process.
The best fit approximation is often exponential in n and a random
log repartition of the sample values µk is often better than other
obvious choices.

Almroth B.O., Stern P., Brogan F.A.(1978)
Noor A.K., Peters J.M.(1980)

Galerkin approximation is preferable to any kind of extrapolation
method.
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Application to a non affine elliptic problem

We are interested in solving

−∆u + µ1
eµ2u − 1
µ2

= f

the results with the interpolation process are

N 4 8 12 16 20
εu

N,M,max 6.53 E-03 1.05 E-03 7.34 E-05 1.30 E-05 5.05 E-06
ηu

N,M 1.94 2.16 2.33 2.36 1.21
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Application to a non affine parabolic problem

We are interested in solving

∂u
∂t

−∆u + µ1
eµ2u − 1
µ2

= f

the reduced basis considers 3 parameters µ1, µ2, t ... results are similar

N 1 5 10 20 30 40
εu

N,M,max 3.82 E-01 1.36 E-02 1.62 E-03 1.46 E-04 1.88 E-05 4.94 E-06
ηu

N,M 79 25.9 8.65 8.25 3.82 1.69
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Rapid evaluation of nonlinear contributions

Similarly as for the spectral method u(µ) approximated by a sum of
u(µi):
e.g. exp(u)

we use the reduced basis exp(u(µi)), → W exp
N

we select the representative collocation points

we represent exp(u(., µ)) by its interpolation over W exp
N

i.e. let u(., µ) be approximated by
∑

j αju(µj), then exp(u(., µ)) will be
approximated by

∑
j βj exp(u(µj)) , where the β’s are tuned so that

exp(
∑

j

αju(µj))(tk ) =
∑

j

βj exp(u(µj))(tk )
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Some first results in QC

u(µ) = Arg infR
u2=1

E(u, µ)

where

E(u, µ) =
1
2

∫
Ω
|∇u|2dxdy +

∫
Ω

V (., µ)u2dxdy +

∫
Ω

∫
Ω

u2(x)u2(y)

|x − y |
dxdy

With the potential

V (x , y , µ) =
µ2√

(x + µ1/2)2 + y2
+

µ2√
(x − µ1/2)2 + y2)
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Figure: Different distances between the nuclei.
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Reduced Basis Formulation for Kohn Sham Equations

The ground state for the Kohn Sham model
ûo([Z , µ∗]) ≡ (uo 1, . . . ,uo ne),

ûo([Z , µ]) = arg inf
ŵo

{
Eo(ŵo ≡ (wo 1, . . . ,wo ne); [Z , µ]),wo,i ∈ Yo,(2)∫
Ωo(µ)

wo iwo j = δij ,1 ≤ i , j ≤ ne

}
,

µ∗(Z ) = arg inf
µ

{
Eo(ûo([Z , µ]); [Z , µ]);µ > 0

}
; (3)

with Yo ≡ H1
per(Ωo(µ))
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Reduced Basis Formulation for Kohn Sham Equations

and the electronic energy Eo(ŵo; [Z , µ]) is defined as

Eo(ŵo; [Z , µ]) = Cw

ne∑
i=1

∫
Ωo(µ)

(∇wo i)
2 − Z

ne∑
i=1

∫
Ωo(µ)

Go wo i
2

+
1
2

Cc

∫
Ωo(µ)

∫
Ωo(µ)

( ne∑
i=1

w2
o i(y1)

)
Go(y1 − y2)

 ne∑
j=1

w2
o j(y2)

 dy1 dy2

− Cx

ne∑
i=1

∫
Ωo(µ)

 ne∑
j=1

w2
o j

4/3

w2
o i , (4)

the periodic Green’s function Go(· ;µ) : Ωo(µ) → R satisfies
−∆Go =

{
δ(y)− 1

|Ωo(µ)|

}
,
∫
Ωo(µ) Go = 0, |Ωo(µ)| = µ is a nucleus

geometric parameter.
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Reduced Basis Formulation for Kohn Sham Equations

Nu εu
N,M εEN,M εφN,M εortho

N,M
5 7.9044 E – 2 4.6557 E – 04 1.4647 E + 0 5.1756 E – 14
6 4.5693 E – 2 3.5279 E – 05 1.2839 E – 1 3.6342 E – 3
7 2.1383 E – 4 1.3947 E – 09 1.0334 E – 3 2.1783 E – 5
8 9.8819 E – 5 8.8168 E – 10 3.7635 E – 4 1.0686 E – 5
9 9.7602 E – 6 3.0509 E – 10 3.8463 E – 5 8.9840 E – 7

Table: Variations of the reduced-basis errors εu
N,M , εEN,M , εφ

N,M and εortho
N,M with

Nu. Here, ne = 5 and 1.5 ≤ µ ≤ 5.5.
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Reduced Basis Formulation for Kohn Sham Equations

here it is not only———————— but

∀n ≤ ne, un(µ) '
N∑

i=1

αiun(µi)

with αi independant of n

so that the complexity scales with N and not with ne × N
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Reduced Basis Formulation for Kohn Sham Equations

Nu maxµ∈ΞT {[eû
N (µ)} |EN − E|/|E| maxµ∈ΞT {[eφ

N (µ)} ēortho

5 7.9021E − 002 4.6513E − 004 1.4647E + 000 3.0345E − 007
6 4.8857E − 002 4.3417E − 005 1.4130E − 001 6.2771E − 002
7 2.3877E − 004 1.3344E − 009 4.8718E − 004 4.8879E − 003
8 8.3038E − 005 1.7380E − 010 3.7165E − 004 2.8572E − 003
9 1.0472E − 005 5.4440E − 011 5.9040E − 005 1.1096E − 003
10 3.4747E − 007 8.7246E − 012 5.9038E − 005 2.8639E − 004

Table 1: Reduced basis solutions for a 1-dimensional problem. Here, ne = 5 and 1.5 ≤ µ ≤ 5.5.

12 24 6 8 1010-7
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ne=6
ne=7
ne=8

Nu

ē N

Figure 1: Convergence of reduced basis error ēN = maxµ∈ΞT {[eû
N (µ)} for 2 ≤ ne ≤ 8.

not unlike that obtained from 1-dimensional model: as shown in Table 2, the errors in û again decrease
monotonically and the orthogonality of the solution is increasingly satisfied as N increases. However, we
note that the computational savings achieved at the online stage is significantly higher for a 3-dimensional
problem.

5 Next Steps

We have demonstrated that reduced basis methods can be successfully applied to solving the Kohn-Sham
equations, and the computational savings can be substantial. There remains, however, significant challenges
to overcome before problems of practical importance can be feasibly solved. We divide the key challenges
into six main areas: (i) RB spaces and treatment of orthogonality constraints; (ii) solution method; (iii)
pseudopotential method; (iv) implementation; (v) model generalization; and (vi) real applications.

Firstly, we need to fully understand the reduced basis spaces that we have defined and their relations to

Nu maxµ∈ΞT {[eû
N (µ)} |EN − E|/|E| maxµ∈ΞT {[eφ

N (µ)} ēortho

2 4.6855E − 01 8.0765E − 02 3.0058E − 01 8.1298E − 08
3 1.1070E − 01 1.0543E − 02 5.5140E − 02 2.6072E − 02
4 2.7217E − 02 1.1797E − 03 1.6030E − 02 2.4393E − 02
5 3.5961E − 04 1.1086E − 06 7.1304E − 05 2.0356E − 03
6 1.6391E − 04 2.1172E − 07 2.8961E − 05 1.1883E − 03
7 1.2049E − 04 1.5489E − 07 2.0473E − 05 9.3882E − 04
8 2.6687E − 05 4.4191E − 08 4.1551E − 06 3.8011E − 04
9 1.1542E − 06 1.5024E − 08 2.7681E − 07 1.0560E − 04

Table 2: Reduced basis solutions for a 3-dimensional problem. Here, ne = 4 and 2 ≤ µ ≤ 4.

8

Figure: Convergence of reduced basis error in the vectorial case for
2 ≤ ne ≤ 8 .
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Reduced element method
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Figure: A first geometry.
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Reduced element method
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Figure: A third geometry.
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Reduced element method
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Reduced element method

As a precomputation, the problem of interest is solved over various
deformations of each reference building block and stored, after
mapping, on the reference building block.
This gives basis functions ζ̂1, ζ̂2, ..., ζ̂N , supposed to be linearly
independent
These basics solutions are mapped over each Ωbb

k through ϕk .
The solution corresponding to an unknown, deformed geometry is then
represented as a linear combination of these mapped solutions

Y N = {vN ∈ L2(Ω)| vN|Ωbb
k
◦ ϕk ∈ span{ζ̂1, ζ̂2, ..., ζ̂N} } .

Note that YN is not an acceptable discretization space for H1(Ω), the
matching between the different subdomains is ensured through the
use of Lagrange multipliers
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Reduced element method

We now define XN to this purpose by gluing the functions of YN across
the interfaces γbb

k ,` between two stages
→ Lagrange multipliers

XN = {v ∈ Y 1
N , ∀k , `, ∀ψ ∈ Wk ,`,

∫
Γe

k,`

(v+ − v−)ψ ds = 0},

where Wk ,` is some well chosen space over Γe
k ,` → nonconforming

approximation.
The discrete problem then reads : Find uN in XN such that

a(uN , vN) = f (vN), ∀vN ∈ XN .
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Fluid flows

For flow problems the tranformations between the reference domain
and the subdomains are more involved: The PIOLA Transform that
allow the work with divergence free discrete spaces

û = J −1(u ◦ Φ)|J|,

→ The velocity is computed independently of the pressure

Y. Maday (Paris 6 & Brown) Reduced basis methods Paris 2006 51 / 58



Fluid flows

For flow problems the tranformations between the reference domain
and the subdomains are more involved: The PIOLA Transform that
allow the work with divergence free discrete spaces
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Fluid flows
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Figure: Domain decomposition.
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Fluid flows
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Figure: Error distribution for a new configuration NP = 15, NB = 15 error plot
for the pressure max =3.10−2, for the velocity error ' 3.10−3.
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Fluid flows
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Figure: Error distribution for a new configuration NP = 15, NB = 30 error plot
for the pressure max=6.10−3, for the velocity error ' 4.10−4, size problem
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Fluid flows
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Figure: A stenosis problem with NP = 15, NB = 15.

Y. Maday (Paris 6 & Brown) Reduced basis methods Paris 2006 55 / 58



Fluid flows
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Figure: A stenosis problem with NP = 15, NB = 30.
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Fluid flows

N N1 N2 |uN − u|H1 ||pN − p||L2

45 9 9 9.3 · 10−3 3.3 · 10
55 11 11 3.1 · 10−3 5.3 · 10−1

65 13 13 2.3 · 10−3 9.0 · 10−2

75 15 15 1.4 · 10−3 5.3 · 10−2

105 15 30 5.4 · 10−4 3.0 · 10−2

Table: Steady Stokes solution on a multi-block bypass with three pipe blocks
and two bifurcation blocks. Here, N = 3N1 + 2N2.
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Important remarks....

Note that contrarily to what happens in the parameter dependant
problem
The full problem over the global geometry is never constructed in
the reduced element method
This is a major achievement

Note also that, more generally, the reduced basis functions have
to be suitably prepared

Finally, do not forget that off-line pre-computations have to be
done, involving your favorit approximation method, and that the
approach is rapid for online computations.
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