Generalized Harmonic Evolutions of Binary Black Hole Spacetimes

Lee Lindblom
Caltech

Collaborators: Larry Kidder, Robert Owen, Oliver Rinne, Harald Pfeiffer, Mark Scheel, Saul Teukolsky

From Geometry to Numerics - Institut Henri Poincare 23 November 2006

Generalized Harmonic Evolutions of Binary Black Hole Spacetimes

Lee Lindblom
Caltech

Collaborators: Larry Kidder, Robert Owen, Oliver Rinne, Harald Pfeiffer, Mark Scheel, Saul Teukolsky

From Geometry to Numerics - Institut Henri Poincare 23 November 2006

- Moving Black Holes.

Generalized Harmonic Evolutions of Binary Black Hole Spacetimes

Lee Lindblom
Caltech

Collaborators: Larry Kidder, Robert Owen, Oliver Rinne, Harald Pfeiffer, Mark Scheel, Saul Teukolsky

From Geometry to Numerics - Institut Henri Poincare 23 November 2006

- Moving Black Holes.
- Dual Coordinate Frame Evolution Method.

Generalized Harmonic Evolutions of Binary Black Hole Spacetimes

Lee Lindblom
Caltech

Collaborators: Larry Kidder, Robert Owen, Oliver Rinne, Harald Pfeiffer, Mark Scheel, Saul Teukolsky

From Geometry to Numerics - Institut Henri Poincare 23 November 2006

- Moving Black Holes.
- Dual Coordinate Frame Evolution Method.
- Horizon Tracking Coordinates.

Generalized Harmonic Evolutions of Binary Black Hole Spacetimes

Lee Lindblom
Caltech

Collaborators: Larry Kidder, Robert Owen, Oliver Rinne, Harald Pfeiffer, Mark Scheel, Saul Teukolsky

From Geometry to Numerics - Institut Henri Poincare 23 November 2006

- Moving Black Holes.
- Dual Coordinate Frame Evolution Method.
- Horizon Tracking Coordinates.
- Binary Black Hole Evolutions.

Moving Black Holes in a Spectral Code

- Spectral: Excision boundary is a smooth analytic surface.

Moving Black Holes in a Spectral Code

- Spectral: Excision boundary is a smooth analytic surface.

Moving Black Holes in a Spectral Code

- Spectral: Excision boundary is a smooth analytic surface.
- Cannot add/remove individual grid points.

Moving Black Holes in a Spectral Code

- Spectral: Excision boundary is a smooth analytic surface.
- Cannot add/remove individual grid points.
- Straightforward method: regrid when holes move too far.

Moving Black Holes in a Spectral Code

- Spectral: Excision boundary is a smooth analytic surface.
- Cannot add/remove individual grid points.
- Straightforward method: regrid when holes move too far.

Moving Black Holes in a Spectral Code

- Spectral: Excision boundary is a smooth analytic surface.
- Cannot add/remove individual grid points.
- Straightforward method: regrid when holes move too far.
- Problems:
- Regridding/interpolation is expensive.

Moving Black Holes in a Spectral Code

- Spectral: Excision boundary is a smooth analytic surface.
- Cannot add/remove individual grid points.
- Straightforward method: regrid when holes move too far.
- Problems:
- Regridding/interpolation is expensive.
- Difficult to get smooth extrapolation at trailing edge of horizon.

Moving Black Holes in a Spectral Code

- Spectral: Excision boundary is a smooth analytic surface.
- Cannot add/remove individual grid points.
- Straightforward method: regrid when holes move too far.
- Problems:
- Regridding/interpolation is expensive.
- Difficult to get smooth extrapolation at trailing edge of horizon.
- Causality trouble at leading edge of horizon.

Moving Black Holes in a Spectral Code

- Spectral: Excision boundary is a smooth analytic surface.
- Cannot add/remove individual grid points.
- Straightforward method: regrid when holes move too far.
- Problems:
- Regridding/interpolation is expensive.
- Difficult to get smooth extrapolation at trailing edge of horizon.
- Causality trouble at leading edge of horizon.

Moving Black Holes in a Spectral Code

- Spectral: Excision boundary is a smooth analytic surface.
- Cannot add/remove individual grid points.
- Straightforward method: regrid when holes move too far.
- Problems:
- Regridding/interpolation is expensive.
- Difficult to get smooth extrapolation at trailing edge of horizon.
- Causality trouble at leading edge of horizon.

Moving Black Holes in a Spectral Code

- Spectral: Excision boundary is a smooth analytic surface.
- Cannot add/remove individual grid points.
- Straightforward method: regrid when holes move too far.
- Problems:
- Regridding/interpolation is expensive.
- Difficult to get smooth extrapolation at trailing edge of horizon.
- Causality trouble at leading edge of horizon.
- Solution:

Choose coordinates that smoothly track the location of the black hole.

Evolving Black Holes in Rotating Frames

- Coordinates that rotate with respect to the inertial frames at infinity are needed to track the horizons of orbiting black holes.
- Evolutions of Schwarzschild in rotating coordinates are unstable.

- Evolutions shown use a computational domain that extends to $r=1000 \mathrm{M}$.
- Angular velocity needed to track the horizons of an equal mass binary at merger is about $\Omega \approx 0.2 / M$.
- Problem caused by asymptotic behavior of metric in rotating coordinates: $\psi_{t t} \sim \rho^{2} \Omega^{2}$, $\psi_{t i} \sim \rho \Omega, \psi_{i j} \sim 1$.

Dual-Coordinate-Frame Evolution Method

- Single-coordinate frame method uses the one set of coordinates, $x^{\bar{a}}=\left\{\bar{t}, x^{\bar{\imath}}\right\}$, to define field components, $u^{\bar{\alpha}}=\left\{\psi_{\bar{a} \bar{b}}, \Pi_{\bar{a} \bar{b}}, \Phi_{\bar{a} \bar{b} \bar{b}}\right\}$, and the same coordinates to determine these components by solving Einstein's equation for $u^{\bar{\alpha}}=u^{\bar{\alpha}}\left(x^{\bar{a}}\right)$:

$$
\partial_{\bar{t}} u^{\bar{\alpha}}+A^{\bar{k}}{ }_{\bar{\alpha}} \partial_{\bar{k}} u^{\bar{\beta}}=F^{\bar{\alpha}} .
$$

Dual-Coordinate-Frame Evolution Method

- Single-coordinate frame method uses the one set of coordinates, $x^{\bar{a}}=\left\{\bar{t}, x^{\bar{\imath}}\right\}$, to define field components, $u^{\bar{\alpha}}=\left\{\psi_{\bar{a} \bar{b}}, \Pi_{\bar{a} \bar{b}}, \Phi_{\bar{a} \bar{b} \bar{b}}\right\}$, and the same coordinates to determine these components by solving Einstein's equation for $u^{\bar{\alpha}}=u^{\bar{\alpha}}\left(x^{\bar{a}}\right)$:

$$
\partial_{\bar{t}} u^{\bar{\alpha}}+A^{\bar{k}} \bar{\alpha}_{\bar{\beta}} \partial_{\bar{k}} u^{\bar{\beta}}=F^{\bar{\alpha}} .
$$

- Dual-coordinate frame method uses a second set of coordinates, $x^{a}=\left\{t, x^{i}\right\}=x^{a}\left(x^{\bar{a}}\right)$, to determine the original representation of the dynamical fields, $u^{\bar{\alpha}}=u^{\bar{\alpha}}\left(x^{a}\right)$, by solving the transformed Einstein equation:

$$
\partial_{t} u^{\bar{\alpha}}+\left[\frac{\partial x^{i}}{\partial \bar{t}} \delta^{\bar{\alpha}}{ }_{\bar{\beta}}+\frac{\partial x^{i}}{\partial x^{\bar{k}}} A^{\bar{k} \bar{\alpha}_{\bar{\beta}}}\right] \partial_{i} u^{\bar{\beta}}=F^{\bar{\alpha}} .
$$

Testing Dual-Coordinate-Frame Evolutions

- Single-frame evolutions of Schwarzschild in rotating coordinates are unstable, while dual-frame evolutions are stable:

Dual Frame Evolution

Single Frame Evolution

- Dual-frame evolution shown here uses a comoving frame with $\Omega=0.2 / \mathrm{M}$ on a domain with outer radius $r=1000 \mathrm{M}$.

Horizon Tracking Coordinates

- Coordinates must be used that track the motions of the holes.
- For equal mass non-spinning binaries, the centers of the holes move only in the $z=0$ orbital plane.
- The coordinate transformation from inertial coordinates, $(\bar{x}, \bar{y}, \bar{z})$, to co-moving coordinates (x, y, z),

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=e^{a(\bar{t})}\left(\begin{array}{ccc}
\cos \varphi(\bar{t}) & -\sin \varphi(\bar{t}) & 0 \\
\sin \varphi(\bar{t}) & \cos \varphi(\bar{t}) & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\bar{x} \\
\bar{y} \\
\bar{z}
\end{array}\right)
$$

with $t=\bar{t}$, is general enough to keep the holes fixed in co-moving coordinates for suitably chosen functions $a(\bar{t})$ and $\varphi(\bar{t})$.

- Since the motions of the holes are not known a priori, the functions $a(\bar{t})$ and $\varphi(\bar{t})$ must be chosen dynamically and adaptively as the system evolves.

Horizon Tracking Coordinates II

- Measure the comoving centers of the holes: $x_{c}(t)$ and $y_{c}(t)$, or equivalently $Q^{x}(t)=\left[x_{c}(t)-x_{c}(0)\right] / x_{c}(0)$ and $Q^{y}(t)=y_{c}(t) / x_{c}(t)$.
- Choose the map parameters $a(t)$ and $\varphi(t)$ to keep $Q^{x}(t)$ and $Q^{y}(t)$ small.

Horizon Tracking Coordinates II

- Measure the comoving centers of the holes: $x_{c}(t)$ and $y_{c}(t)$, or equivalently $Q^{x}(t)=\left[x_{C}(t)-x_{c}(0)\right] / x_{c}(0)$ and $Q^{y}(t)=y_{c}(t) / x_{c}(t)$.
- Choose the map parameters $a(t)$ and $\varphi(t)$ to keep $Q^{x}(t)$ and $Q^{y}(t)$ small.
- Changing the map parameters by the small amounts, δa and $\delta \varphi$, results in associated small changes in δQ^{x} and δQ^{y} :

$$
\delta Q^{x}=-\delta a, \quad \delta Q^{y}=-\delta \varphi
$$

Horizon Tracking Coordinates II

- Measure the comoving centers of the holes: $x_{C}(t)$ and $y_{c}(t)$, or equivalently $Q^{x}(t)=\left[x_{C}(t)-x_{c}(0)\right] / x_{c}(0)$ and $Q^{y}(t)=y_{c}(t) / x_{C}(t)$.
- Choose the map parameters $a(t)$ and $\varphi(t)$ to keep $Q^{x}(t)$ and $Q^{y}(t)$ small.
- Changing the map parameters by the small amounts, δa and $\delta \varphi$, results in associated small changes in δQ^{x} and δQ^{y} :

$$
\delta Q^{x}=-\delta a, \quad \delta Q^{y}=-\delta \varphi
$$

- Measure the quantities $Q^{y}(t), d Q^{y}(t) / d t, d^{2} Q^{y}(t) / d t^{2}$, and set

$$
\frac{d^{3} \varphi}{d t^{3}}=\lambda^{3} Q^{y}+3 \lambda^{2} \frac{d Q^{y}}{d t}+3 \lambda \frac{d^{2} Q^{y}}{d t^{2}}=-\frac{d^{3} Q^{y}}{d t^{3}}
$$

The solutions to this "closed-loop" equation for Q^{y} have the form $Q^{y}(t)=\left(A t^{2}+B t+C\right) e^{-\lambda t}$, so Q^{y} always decreases.

Horizon Tracking Coordinates III

- In practice the coordinate maps are adjusted only at a prescribed set of adjustment times $t=t_{i}$.

Horizon Tracking Coordinates III

- In practice the coordinate maps are adjusted only at a prescribed set of adjustment times $t=t_{\text {p }}$.
- In the time interval $t_{i}<t<t_{i+1}$ we set:

$$
\begin{aligned}
\varphi(t)= & \varphi_{i}+\left(t-t_{i}\right) \frac{d \varphi_{i}}{d t}+\frac{\left(t-t_{i}\right)^{2}}{2} \frac{d^{2} \varphi_{i}}{d t^{2}} \\
& +\frac{\left(t-t_{i}\right)^{3}}{2}\left(\lambda \frac{d^{2} Q_{i}^{y}}{d t^{2}}+\lambda^{2} \frac{d Q_{i}^{y}}{d t}+\lambda^{3} \frac{Q_{i}^{y}}{3}\right)
\end{aligned}
$$

where Q^{x}, Q^{y}, and their derivatives are measured at $t=t_{i}$, so these maps satisfy the closed loop
equation at $t=t_{i}$.

Horizon Tracking Coordinates III

- In practice the coordinate maps are adjusted only at a prescribed set of adjustment times $t=t_{\text {p }}$.
- In the time interval $t_{i}<t<t_{i+1}$ we set:

$$
\begin{aligned}
\varphi(t)= & \varphi_{i}+\left(t-t_{i}\right) \frac{d \varphi_{i}}{d t}+\frac{\left(t-t_{i}\right)^{2}}{2} \frac{d^{2} \varphi_{i}}{d t^{2}} \\
& +\frac{\left(t-t_{i}\right)^{3}}{2}\left(\lambda \frac{d^{2} Q_{i}^{y}}{d t^{2}}+\lambda^{2} \frac{d Q_{i}^{y}}{d t}+\lambda^{3} \frac{Q_{i}^{y}}{3}\right)
\end{aligned}
$$

where Q^{x}, Q^{y}, and their derivatives are measured at $t=t_{i}$, so these maps satisfy the closed loop equation at $t=t_{i}$.

- This works! We are now able to evolve binary black holes using horizon tracking coordinates until just before merger.

Evolving Binary Black Hole Spacetimes

- We can now evolve binary black hole spacetimes with excellent accuracy and computational efficiency through many orbits.

Improved Circular Orbit Initial Data

- The conformal thin sandwich initial data has initial radial velocity $\dot{R}=0$. True circular orbit initial data should have $\dot{R}<0$, but small.
- Conformal thin sandwich initial data therefore results in slightly elliptical orbits:

Improved Circular Orbit Initial Data

- The conformal thin sandwich initial data has initial radial velocity $\dot{R}=0$. True circular orbit initial data should have $\dot{R}<0$, but small.
- Conformal thin sandwich initial data therefore results in slightly elliptical orbits:

- Small changes in the initial \dot{R} and Ω gives a more circular orbit.

Improved Circular Orbit Initial Data

- The conformal thin sandwich initial data has initial radial velocity $\dot{R}=0$. True circular orbit initial data should have $\dot{R}<0$, but small.
- Conformal thin sandwich initial data therefore results in slightly elliptical orbits:

- Small changes in the initial \dot{R} and Ω gives a more circular orbit.
- Orbit point with $\dot{R}=0$ is near apcenter, with larger R than corresponding point in circular orbit.
- Orbits at time shifted points have nearly identical gravitational waveforms.

