Next steps in the simulation of Einstein equations

L. Lehner

LSU
NSF-Research Corporation

Outline

- Observations from recent simulations
- What's puzzling, what's 'left'
- What can be inferred so far
- Next steps \& requirements
- Two driving problems
- Looking ahead, what comes next.

Binary black holes...

- Simulations of bbh's under way. [Pretorius,Baker et.al (NASA), Campanelli et.al. (UTB), Hermann et al. (PSU), Bruegmann et.al. (Jena), Kidder et.al. (Caltech-Cornell) Diener et.al (LSU-AEI)...]
- Equal mass binaries
- Different mass binaries $\left(m_{1} / m_{2}=1 . .4\right)$
- Spinning configurations with spins aligned/antialigned to orbit
- Collapsing scalar fields

Main observations?

- Not a 'clear ISCO' at waveform level, subtle one at power spectrum level.

- Waveforms largely independent of eccentricity in I.D. [Buonnano-Cook-Pretorius,Pfeiffer-Scheel-Lindblom...]
- Quadrupole formula pretty good approximation
- Very good agreement with 3PN approximations

Very good agreement throughout, are we surprised?

further observations/consequences

- Waves \& Data analysis
- We see they differ! Is this 'seen' by data analysis?
- Matched filter $\rightarrow \max \left\{<\mathrm{h}, \mathrm{T}\left(\mathrm{t}_{0}\right)>\right\}$ over $\mathrm{t}_{0}(\mathrm{~h}:$ signal, T template)

- Waveforms seem 'good' for detection...

(mostly) unchartered trails

- 'Generic' spin-orbit configurations.
- Flips and hang-overs likely
- Qns:
- do PN and related approxs do well here?
- Does the QN approx capture main features of the waves?
- Is there an 'abrupt' ISCO in the waves?
- Even when this is the case:
- Detection needs are far less demanding than physical interpretation
- Other systems are awaiting further developments and results from simulations.
- BH-NS will show significant differences depending on equation of state.
... Two projects along these roads

Infrastructure

- HAD: Distributed adaptive mesh refinement package incorporating
- True-adaptivity through self-shadow hierarchy (refines/unrefines by monitoring truncation error of the numerical solution without pre-specification of grid structure)
- Incorporates summation by parts derivative operators, Runge-Kutta time integration, Penalty and Olsson's projection [key ingredients in ensuring stability for generic, linear, $1^{\text {st }}$ order hyperbolic systems, see Tiglio's talk]
- Incorporates tappered grid approach to ensure stability and order of accuracy are preserved when employing adaptive techniques. [Arbitrary orders in principle, though as present up to $4^{\text {th }}$ order].
- Both cell-centered and vertex centered grids structures available. Adaptivity fully developed for both types, though not yet fully conservative to round-off beyond unigrid case.
- In particular : Two GR formulations (ADM-like [Sarbach-Tiglio] \& Generalized Harmonic $1^{\text {st }}$ order formulation [Lindblom-Scheel-Kidder-Rinne...]). Two GRHydro formulations [Cell centered or Vertex centered], a MHD code.
[Liebling,Anderson,Neilsen,Hirschmann,Motl,Olabarrieta,Palenzuela,L.L.]

Boson star binaries

[Palenzuela,LL,Liebling,Olabarrieta]

- Goals:
- Test infrastructure needed for accurate simulations.
- Higher order accuracy, adaptive gridding, non-vacuum scenarios, etc.
- Test 'conclusions' drawn from binary black hole simulations
- Trajectories, radiation describable by (post) Newtonian considerations
- Boson stars,
- Self gravitating complex scalar fields
- Employed to obtain a stationary solution of EEs
- Governed by non-linear wave eqns (no shocks or discontinuities)
- "Stars" can be defined, have both stable and unstable branches like TOV stars.

Head-on collisions

$\mathrm{t}=0.00$	zscale $=2.000 \mathrm{e}+02$
$(0.000000 \mathrm{e}+00,1.027042 \mathrm{e}-04)$	$39 \times 39 \times 1(\mathrm{X}$ slice $)$
	$[-60.00,60.00],[-60.00,60.00]$

$$
\Phi=\Phi_{1}(x-a)+\Phi_{1}(x+a)
$$

'other' cases

$$
\Phi=\Phi_{1}(x-a)+e^{i \delta} \Phi_{1}(x+a)
$$

(P)Newtonian?

FIG. 10: The x coordinate of the center of the boson star as a funtion of time for the different cases and the newtonian approximation. The position of the boson is identified with the maximum of the Noether density

A step after another

[Anderson,Olabarrieta,Motl,Neilsen,Hirschmann,LL]

- GR + (M) Hydro
- Finishing debugging phase \& head-to-head comparison for cellcentered vs. vertex centered approaches.
- Latter, give-up conservation to round-off level but tension!
- In GR we have no conservation....why bother?
- Newtonian binaries do not behave well unless conservation + adapted variables are adopted [incidently...worries for BH binaries as well!]
- TOV stars handled similarly well with both approaches so far, though not all schemes able to do this for cell-centered schemes.

BH-NS \& related problems

- Code must be able to tackle:
- Binary objects [early stages]. Differentially rotating members [ongoing collaboration with J. Novak]
- Disruption of star
- Disk [Megevand,Anderson,LL] and possible jet formation [Novak's data for magnetized stars, [Anderson-Novak Neilsen-Hirschmann-LL].
- ID, both binary black holes and preliminary BHNS simulations [Bishop,LL,Winicour,Gomez,Maharaj] indicate 'reasonable' is enough to tackle the problem. Grandclement-Gourgholom data to be employed.

So... what's next

- Firm-up current observations
- Resolution (adaptivity + higher order)
- Cleaning up systematics. Eg, current radiation extraction assume needed structure translates cleanly to finite distances/time-like worldtubes.

$$
\begin{array}{l|l}
g_{u u}=1 & \\
g_{u A}=0 & \\
g_{A B} / R^{2}=F^{2} q_{A B}+c_{A B} / R & \\
g_{\mathrm{tA}}=0 \\
& / R^{2}=F^{2} q_{A B}+c_{A B} / R
\end{array}
$$

If F not 1, radiation formulae must be modified [Winicour 82]
If first conditions not satisfied, spurious time influence \& coordinate dependence induced

- Boundaries are a factor, extractions at $\sim 30-50 \mathrm{M}$, boundaries much farther out. CPBC+'physically' motivated bdry conditions needed [see Tiglio's, Winicour's,Rinne's,Buchman's, Lindblom's talks]

What's next after next...

- Can simulations be pushed (much) further in time?... unlikely!
- Why? Recall total computational time $\sim 1 / h^{4}$. Error $\sim t^{q} h^{m}$
- Suppose a computation took T_{A} time, with error E and covering n_{A} orbits
- Earlier orbits, PN expression holds, $\mathrm{n} \sim \mathrm{t}^{5 / 8}$
- Time for n_{B} orbits with same total error $\geq T_{B}=T_{A}\left(n_{B} / n_{A}\right)^{8 / 5+6 q / m}$
- If $\mathrm{q}=1, \mathrm{~T}_{\mathrm{B}}=\mathrm{T}_{\mathrm{A}}{ }^{*}\{4.8,3.2,2.7,2.4, \ldots 1.6\}$ ffor $2^{\text {nd }}, 4^{\text {th }}, 6^{\text {th }} \ldots . .$. ,'spectral' orders]
- Examine 'ISCO' break-up by exploring early stages before merger and monitoring h(f)
- Examine 'generic' spin-orbit configurations.
- If current observations stand \Rightarrow worrisome/problematic status of affairs!
- We'd need tremendous resources to 'extract' non-linear features
- Are non-linear features so 'mundane'... it'd be a first time!
- Non-vacuum scenarios hold a definitive promise.

