HYPERBOLIC CONSERVATION LAWS and SPACETIMES WITH LIMITED REGULARITY

Philippe G. LeFloch University of Paris 6 & CNRS

Interplay between nonlinear hyperbolic P.D.E.'s and geometry. Fluids and metrics with limited regularity.

Three different topics :

- Well-posedness theory for hyperbolic conservation laws on a Lorentzian background (M. Ben-Artzi)
- Injectivity radius estimates for Lorentzian manifolds with bounded curvature (B.-L. Chen)
- Existence of Gowdy-type matter spacetimes with bounded variation (J.M. Stewart)

CONSERVATION LAWS ON A LORENTZIAN MANIFOLD

Joint work with M. Ben-Artzi, Jerusalem.

(M,g): time-oriented, (n+1)-dimensional Lorentzian manifold with signature $(-,+,\ldots,+)$.

Definition.

- A flux on M: a vector field $x \mapsto f_x(\bar{u}) \in T_x M$.
- ► Time-like flux : $g_{\alpha\beta} \partial_u f_x^{\alpha}(\bar{u}) \partial_u f_x^{\beta}(\bar{u}) < 0, \qquad x \in M, \ \bar{u} \in \mathbb{R}.$
- ▶ Conservation law : $\nabla_{\alpha}(f^{\alpha}(u)) = 0$, $u : M \to \mathbb{R}$ being a scalar field.
- Geometry compatible : $\nabla_{\alpha} f_{x}^{\alpha}(\bar{u}) = 0$ for all $\bar{u} \in \mathbb{R}, x \in M$.

Remark.

- Nonlinear hyperbolic equation.
- A model for the dynamics of compressible fluids.
- Allow for shock waves and their interplay with the (fixed background) geometry.

Globally hyperbolic.

▶ Foliation by space-like, compact, oriented hypersurfaces

$$M=\bigcup_{t\in\mathbb{R}}\mathcal{H}_t.$$

 n_t : future-oriented, unit normal vector field to \mathcal{H}_t g_t : induced metric. X^{n_t} : normal component of X.

• Future of the Cauchy hypersurface \mathcal{H}_0

$$\mathcal{J}^+(\mathcal{H}_0) = \bigcup_{t \ge 0} \mathcal{H}_t.$$

▶ An initial data $u_0 : \mathcal{H}_0 \to \mathbb{R}$ being prescribed, we search for a weak solution $u = u(x) \in L^{\infty}(\mathcal{J}^+(\mathcal{H}_0))$ satisfying in a weak sense

 $u_{|\mathcal{H}_0} = u_0.$

Discontinuous solutions in the sense of distributions. Non-uniqueness. Need an entropy criterion.

Definition.

• Convex entropy flux : $F = F_x(\bar{u})$ if there exists $U : \mathbb{R} \to \mathbb{R}$ convex $F_x(\bar{u}) = \int_0^{\bar{u}} \partial_u U(u') \partial_u f_x(u') du', \quad x \in M, \ \bar{u} \in \mathbb{R}.$

Additional conservation laws for smooth solutions $\nabla_{\alpha}(F^{\alpha}(u)) = 0$.

• Entropy solution of the geometry-compatible conservation law :

 $u = u(x) \in L^{\infty}(\mathcal{J}^+(\mathcal{H}_0))$ such that for all convex entropy flux $F = F_x(\bar{u})$ and smooth functions $\theta \ge 0$

$$\int_{\mathcal{J}^+(\mathcal{H}_0)} F^{\alpha}(u) \, \nabla_{\alpha} \theta \, dV_g - \int_{\mathcal{H}_0} F^{n_0}(u_0) \, \theta_{\mathcal{H}_0} \, dV_{g_0} \geq 0.$$

Theorem. (Well-posedness theory for hyperbolic conservation laws on a Lorentzian manifold.)

There exists a unique entropy solution $u \in L^{\infty}(\mathcal{J}^+(\mathcal{H}_0))$:

- the trace $u_{|\mathcal{H}_t} \in L^1(\mathcal{H}_t, g_t)$ exists for each t,
- ▶ for any convex entropy flux F the functions ||F^{nt}(u_{|Ht})||_{L¹(Ht,gt)} are non-increasing in time,
- ▶ for any two entropy solutions *u*, *v*,

 $\|f^{n_t}(u_{|\mathcal{H}_t}) - f^{n_t}(v_{|\mathcal{H}_t})\|_{L^1(\mathcal{H}_t,g_t)} \approx \|u_{|\mathcal{H}_t} - v_{|\mathcal{H}_t}\|_{L^1(\mathcal{H}_t,g_t)}$

is non-increasing in time.

Remarks.

- solutions are discontinuous (shock waves).
- the theory extends to the outer communication region of the Schwarzschild spacetime.

Work in progress.

 convergence of finite volume approximations (Riemann solvers, Godunov-type schemes).

INJECTIVITY RADIUS ESTIMATES FOR LORENTZIAN MANIFOLDS Joint work with B.-L. Chen, Guang-Zhou.

Purpose.

- Investigate the geometry and regularity of (n + 1)-dimensional Lorentzian manifolds (M, g).
- Exponential map \exp_p at some point $p \in M$.
 - conjugate radius : largest ball on which \exp_p is a local diffeomorphism
 - Injectivity radius : largest ball on which \exp_p is a global diffeomorphism.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Obtain lower bounds in terms of curvature and volume.

Results for Riemannian manifolds.

Cheeger, Gromov, Petersen, etc.

(M,g): an *n*-dimensional Riemannian manifold $\mathcal{B}(p,r)$: geodesic ball centered at $p \in M$.

 $\|\mathsf{Rm}_g\|_{\mathsf{L}^{\infty}(\mathcal{B}(p,1))} \leq K_0, \qquad \mathsf{Vol}_g(\mathcal{B}(p,1)) \geq v_0$

• The injectivity radius is at least $i_0 = i_0(K_0, v_0, n) > 0$.

Given ε > 0 and 0 < γ < 1 there exist C(ε, γ) > 0 and some coordinates defined in B(p, r₀) in which

$$\begin{split} (1+\varepsilon)^{-1} \,\delta_{ij} &\leq g_{ij} \leq (1+\varepsilon) \,\delta_{ij}, \\ r \,\|\partial g\|_{\mathbf{C}^0(\mathcal{B}(\rho,r))} + r^{1+\gamma} \|\partial g\|_{\mathbf{C}^\gamma(\mathcal{B}(\rho,r))} \leq C(\varepsilon,\gamma), \qquad r \in (0,r_0]. \end{split}$$

Results for foliated Lorentzian manifolds.

Anderson assumed

 $\|\mathsf{Rm}_g\|_{\mathsf{L}^\infty(\mathcal{B}(p,1))} \leq K_0$

plus other structure conditions, and investigated the existence of "good" coordinates, and various issues of long-time evolution.

Klainerman and Rodnianski relied instead on

```
\sup_{\Sigma \text{ spacelike}} \|\mathsf{Rm}_g\|_{\mathsf{L}^2(\mathcal{B}(p,1)\cap\Sigma)} \leq \mathcal{K}_0,
```

and, in a series of papers, established estimates on the conjugacy radius and injectivity radius of null cones.

Aim.

- Purely *local* and fully *geometric* estimates, without assuming a system of coordinates or a foliation a priori.
- Injectivity radius estimates in arbitrary directions as well as in null cones.

Techniques.

• Use a "reference" Riemannian metric \hat{g} , based on a vector-field or a vector at one point.

- ► Find a suitable generalization of *classical arguments* from Riemannian geometry: geodesics, Jacobi fields, comparison arguments, etc.
- Compare the behavior of g-geodesics and \hat{g} -geodesics.

Reference Riemannian metric.

(M,g): oriented (n + 1)-dimensional Lorentzian manifold.

- ▶ $T_p \in T_p M$: future-oriented time-like unit vector field.
- ► Moving frame (orthonormal) : e_{α} ($\alpha = 0, 1, ..., n$) consisting of $e_0 = T$ supplemented with spacelike vectors e_j (j = 1, ..., n). e^{α} : dual frame. Lorentzian metric : $g = \eta_{\alpha\beta} e^{\alpha} \otimes e^{\beta}$, $\eta_{\alpha\beta}$: Minkowski.

Riemannian metric :

 $\widehat{g} := \delta_{lphaeta} \, e^{lpha} \otimes e^{eta}, \qquad \delta_{lphaeta} : \; {
m Euclidian}$

will be used to compute the norm $|A|_T$ of tensors on M.

• Special choice : Choose e_j in the orthogonal $\{e_0\}^{\perp}$.

All metrics equivalent if T varies in a compact subset of the future cone.

Injectivity radius with respect to a reference vector.

- ► If *M* is not geodesically complete, then exp_b is defined only on a neighborhood of the origin in *T_pM*.
- The metric g_p on T_pM is not positive definite and the norm of a non-zero vector may vanish. We need to rely on ĝ_p and consider the ĝ -ball B_{T_p}(0, r) ⊂ T_pM.

Definition.

The injectivity radius with respect to the reference vector T_p

 $Inj_g(M, p, T_p)$

is the largest radius r such that \exp_p is a global diffeomorphism from $B_{T_p}(0, r)$ to a neighborhood of p.

First result : Lorentzian manifolds with a prescribed vector field.

$$\begin{split} \Omega \subset M &: \text{ domain containing a point } p \text{ and foliated by spacelike} \\ \text{hypersurfaces with normal } T, \ \Omega &= \bigcup_{t \in [-1,1]} \Sigma_t, \text{ with lapse function } : \\ n^2 &:= -g \left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t} \right). \end{split}$$

- (A1): $|\log n| \le K_0$ in Ω .
- (A2): $|\mathcal{L}_T g|_T \leq K_1$ in Ω .
- (A3): $|\operatorname{Rm}_g|_T \leq K_2$ in Ω .
- (A4): $\operatorname{Vol}_{g_0}(\mathcal{B}_{\Sigma_0}(p,1)) \ge v_0$ (initial slice).

Theorem 1. Let (M, g) be a Lorentzian manifold satisfying (A1)-(A4) at some point p and for some vector field T. Then, there exists $i_0 > 0$ depending only upon the foliation bounds K_0, K_1 , the curvature bound K_2 , the volume bound v_0 , and the dimension such that

 $Inj_g(M, p, T_p) \geq i_0.$

Second result : Lorentzian manifolds with a prescribed vector at one point.

No need to prescribe the whole vector field and foliation a priori.

- Given (M, g), p ∈ M, and a unit vector T ∈ T_pM, consider the reference metric ĝ := ⟨, ⟩_T on T_pM.
- Assume that exp_p is defined on B_T(0, r₀) ⊂ T_pM (ball determined by ĝ).
- ▶ Pull back : $g = \exp_p^* g$ (still denoted by g) is defined on $B_T(0, r_0)$.
- *g*-parallel translate the vector T along the (straight) radial geodesics from the origin. Vector field still denoted by T and defined on $B_T(0, r_0)$.

Use T and g to define a reference Riemannian metric ĝ on B_T(0, r₀). Compute the norms |A|_T on B_T(0, r₀). Investigate the geometry of the local covering

 $\exp_{p}: B_{T}(0,r_{0}) \rightarrow \mathcal{B}(p,r_{0}) := \exp_{p}(B_{T}(0,r)).$

Theorem 2. (B.-L. Chen & P.G. LeFloch, 2006) Let (M, g) be an (n + 1)-dimensional Lorentzian manifold, and consider a point $p \in M$ together with a reference vector $T \in T_pM$. Assume that exp_p is defined on the ball $B_T(0, r_0) \subset T_pM$ and

 $|Rm_g|_T \leq r_0^{-2}$ on $B_T(0, r_0)$.

Then, there exists $c(n) \in (0, 1)$ depending only on the dimension of the manifold such that

$$lnj_g(M, p, T) \geq c(n) \frac{Vol_g(\mathcal{B}(p, c(n) r_0))}{r_0^{n+1}} r_0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

GOWDY MATTER SPACETIMES WITH BOUNDED VARIATION Joint work with J.M. Stewart, Cambridge.

Spacetime. (M, g): (3 + 1)-dimensional Lorentzian manifold satisfying Einstein field equations : $G_{\alpha\beta} = \kappa T_{\alpha\beta}$.

Perfect fluids. $T_{\alpha\beta} = (\mu + p) u_{\alpha} u_{\beta} + p g_{\alpha\beta}$

- energy density $\mu > 0$
- ► equation of state for the pressure $p = c_s^2 \mu$, $0 < c_s < 1$, c_s : sound speed
- light speed normalized = 1
- time-like, unit velocity vector u^{α}

Existence theory in the bounded variation class (BV) under symmetry assumptions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Plane-symmetric Gowdy-type spacetimes with matter.

Two linearly independent, commuting Killing fields X, Y and in coordinates

$$g = e^{2a} \left(-dt^2 + dx^2 \right) + e^{2b} \left(e^{2c} dy^2 + e^{-2c} dz^2 \right)$$

for some coefficients a, b, c depending on t, x. Work pioneered by Moncrief, Isenberg, Rendall, Chrusciel, etc.

Velocity vector has only an x-component

$$u^{lpha}=e^{-a}\gamma(1,v,0,0), \quad \gamma=(1-v^2)^{-1/2}, \qquad |v|<1$$

From $T^{\alpha\beta}$ we define τ, S, Σ

$$T^{00} = e^{-2a} ((\mu + p)\gamma^2 - p) =: e^{-2a} \tau$$
$$T^{01} = T^{10} = e^{-2a} (\mu + p)\gamma^2 v =: e^{-2a} S$$
$$T^{11} = e^{-2a} ((\mu + p)\gamma^2 v^2 + p) =: e^{-2a} \Sigma$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Evolution and constraint equations.

Three evolution equations (second-order nonlinear wave equations)

$$a_{tt} - a_{xx} = b_t^2 - b_x^2 - c_t^2 + c_x^2 - \frac{\kappa}{2} e^{2a} (\mu + p)$$
$$b_{tt} - b_{xx} = -2 b_t^2 + 2 b_x^2 + \frac{\kappa}{2} e^{2a} (\mu - p)$$
$$c_{tt} - c_{xx} = -2 b_t c_t + 2 b_x c_x$$

Two constraint equations (first-order in time)

$$2a_tb_t + 2a_xb_x + b_t^2 - 2b_{xx} - 3b_x^2 - c_t^2 - c_x^2 = \kappa e^{2a}\tau$$

$$-2a_tb_x - 2a_xb_t + 2b_{tx} + 2b_tb_x + 2c_tc_x = \kappa e^{2a}S$$

From Bianchi identities we deduce the Euler equations

$$\tau_t + S_x = -\tau(a_t + 2b_t) - S(2a_x + 2b_x) - \Sigma a_t - 2pb_t,$$

$$S_t + \Sigma_x = -\tau a_x - S(2a_t + 2b_t) - \Sigma(a_x + 2b_x) + 2pb_x.$$

三 のへで

Special case : vacuum.

- Blow-up in sup norm in finite time.
- ► As long as the variable *b* remains bounded, the variables *a* and *c* remain bounded.
- Only expect existence for the Euler-Einstein equations until the geometry blows-up.

Special case : Relativistic Euler equations in the Minkowski space.

• Letting $a = b = \kappa = 0$ we obtain the fluid equations

$$\left(\frac{1+c_s^2 v^2}{1-v^2} \mu \right)_t + \left(\frac{1+c_s^2}{1-v^2} \mu v \right)_x = 0,$$

$$\left(\frac{1+c_s^2}{1-v^2} \mu v \right)_t + \left(\frac{v^2+c_s^2}{1-v^2} \mu \right)_x = 0.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Nonlinear hyperbolic equations, discontinuities in (μ, ν). Work by Smoller, Temple, etc. **Theorem.**(Initial-value problem for the Euler-Einstein equations in a plane-symmetric Gowdy spacetime).

Fix initial data $(a_t, a_x, b_t, b_x, c_t, c_x, \mu, v)(0)$ satisfying the constraint equations and having locally bounded variation (BV). Then :

- ► There exists a solution (a, b, c, μ, v) which is defined for all $x \in \mathbb{R}$ on a maximal time interval $t \in [0, T_{max})$.
- It satisfies the constraint equations and (a_t, a_x, b_t, b_x, c_t, c_x, μ, ν) has bounded variation at every time.
- The fluid variables satisfy entropy inequalities.
- When T_{max} < ∞, the sup norm of (a, b, µ) must blow-up at t = T_{max}.

Remarks.

- Arbitrary large data, shock waves, Lipschitz continuous metric, Gravitational waves.
- Possible blow-up in the geometry a, b and matter concentration in μ .
- Work in progress : T3 Gowdy spacetimes in areal coordinates, and censorship conjecture for Euler-Einstein spacetimes.