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Introduction

✦ coalescing binary black holes strongest sources 
for gravitational radiation

✦ difficult relativistic problem (no symmetries), 
pure vacuum 

✦ realistic initial values?

✦ Schild: quasi-circular orbits for two charged 
bodies in electrodynamics (incoming radiation)

✦ helical Killing vector, 
asymptotically ∂t + Ω∂φ



Charges in Maxwell 
theory

• charges sources of the Maxwell equations, four-dimensional notation,
Lorentz gauge, linear equations,

!Aµ = jµ

explicit expressions for the potentials in terms of retarded integrals
over the charges

• charges move according to Lorentz force, therefore non-linear
problem (radiation back-reaction)

• Schild: stationary approximation for the quasi-circular motion,
incoming radiation compensates outgoing radiation (sequence
of circular orbits)



Binary black holes
• pure vacuum problem, no symmetries

• 3+1 decomposition

ds2 = −N2dt2 + γab(dxa + βadt)(dxb + βbdt)

• 10 Einstein equations Rµν = 0 split in 6 time evolution and 4
constraint equations

• constraints constrain the initial values γab(t0), γab,t(t0), 4 equations
plus 4 gauge freedoms for 12 quantities, underdetermined system,
problem: not known how to encode physics in the initial data
(gravitational radiation included?)



What has been done?
• post-Newtonian calculations:

calculations to order 3pN, resummation of the perturbation series
(Blanchet, Buonnano, Damour, Schäfer,. . . ).

• initial data for binary black holes:
numerical solution of the Lichnerowicz equations for Bowen-York
initial data (conformally flat spatial metric), helical KV
(Baumgarte, Cook, Shapiro,. . . )

• IWM spacetimes (Meudon):
toy model for gravitation, theory without radiation: γab

conformally flat, binary IWM black holes with helical KV
(non-regular horizon, Kerr not included).



Helical Killing vector

• asymptotically ∂t′ + Ω∂φ, choose ξ = ∂t

• quotient space metric (Ehlers, Geroch)

ds2 = −f(dt + kadxa)(dt + kbdxb) +
1
f

habdxadxb

f: norm of the Killing vector, ξa = −f(1, ka)

• Maxwell-type equation

1
2
Da(f2kab) = 0, kab = ka,b − kb,a



• twist potential (h = det(hab))

kab =
1√
hf2

εabc∂cb

• Ernst potential E = f + ib

fDaDaE =
f√
h

(
√

hhabEa)b = DaEDaE

corresponds to the 4 constraint equations

• non-linear sigma model

R(3)
ab =

1
2f2

"(EaĒb)

• 3-dimensional gravity with sigma model ’matter’ determined
by the Ernst equation



Projection formalism

✦ advantage: less and simpler equations 

✦  drawback: singular equations for f=0 (f changes 
sign at the light cylinder, numerical problems?)



Minkowski in rotating 
coordinates

• Minkowski: f = 1, b = 0,
rotating coordinates φ′ = φ− Ωt

f ′ = 1− Ω2ρ2, b′ = 2Ωz

• ρ < 1/Ω: f > 0,
ρ > 1/Ω: f < 0,
ρ = 1/Ω: light cylinder (observer rotates with c)

• transformed metric hab (rescaled with f), hφφ invariant, rest

h′
ab = (1− Ω2ρ2)hab



• signature change from +3 to −1 at the light cylinder. No
signature change of 4d metric, but t and φ change roles.

• Ernst equation in non-rotating coordinates

f∆E = (∇E)2

• in rotating coordinates, Laplace operator replaced by L

LE = Eρρ +
1
ρ
Eρ + Ezz +

(
1
ρ2
− Ω2

)
Eφφ

elliptic equation inside the light cylinder, hyperbolic outside
(if φ-dependent): symmetric positive system, unique solution
(Torre), numerical studies (Whelan et al.)



Horizons, 2+1 
decomposition

• Killing horizon (f = 0) gives local concept

• 2 + 1 decomposition: foliation by spheres

habdxadxb = sαβ(dxα + Bαdr)(dxβ + Bβdr) +A2dr2

• 3 parabolic equations (‘constraint’), 3 elliptic equations

• singularities: horizon, light cylinder, infinity



!

2+1 decomposition

r, θ,φ



• horizon: regular singularity (expansion in t = r −R with
θ, φ dependent coefficients)

f ∼ A2 ∼ (r −R)2,

locally like Kerr black hole

• infinity not regular, formal expansion

y =
∑

n=1

yn(r, θ,φ)
rn

r-dependence of yn oscillatory terms

• light cylinder: regular singularity at surface with cylindrical
topology, precise location unknown in coordinate system
adapted to horizon (f ∼ A2)



Outlook

✦ analytical task: global existence, asymptotic 
behavior

✦ numerical task: multi-domain spectral methods 
(Lorene)

✦ physical task: Killing vector approximate, only 
valid in finite region, matching to asymptotically 
flat spacetime



x =
a sin θ cos ψ

cosh η − cos θ
,

y =
a sin θ sinψ

cosh η − cos θ
,

z =
a sinh η

cosh η − cos θ
,

Bispherical coordinates

F (η, θ, ψ) =
√

cosh η − cos θ
∑

l,m

Hl(η)Ylm(θ, ψ)

Laplace equation ∆F = 0

Hl(η) = ale
(l+ 1

2 )η + ble
−(l+ 1

2 )η


