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Quite general initial data for massive isolated bodies in General Relativity
can be constructed by the conformal method. The problem of their evolution
is more difficult to handle. The Euler equations for fluid bodies become
singular in regions where the density vanishes, except for some very special
equations of state discovered by Rendall, but, as he points out himself, his
solution is not unique.

We show that when the pressure can be neglected the Einstein - matter
system with initial data massive isolated bodies form a well posed system,
whose solution is physically unique.
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Einstein - dust equations

Sαβ ≡ Rαβ − 1

2
gαβT λ

λ ,

∇ covariant differential in the spacetime metric g.
Conservation law

∇αTαβ = 0.

Pressure free matter (dust)

Tαβ = ruαuβ,

r scalar matter density, u future directed flow vector field,

uαuα = −1, hence uα∇βuα = 0,
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Projection of conservation law orthogonal to u,

r uα∇αuβ = 0 → uα∇αuβ = 0 if r 6= 0,

geodesic equation.

Projection into the direction of u gives continuity equation

∇α(ruα) = uα∂αr + r∇αuα = 0.

In n + 1 dimensional spacetime Einstein equations with dust source read

Rαβ = r(uαuβ +
1

n− 1
gαβ).

0.0.1
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Dynamics.

Unknowns: g, r, u.
Initial data on a smooth n dimensional manifold M .

Geometric data: Riemannian metric ḡ , symmetric 2-tensor k̄.
Matter data: scalar function r̄, tangent vector field v̄ to M, ū is the

spacetime unit vector whose orthogonal projection on M is v̄, i.e.

N̄−2(ū0)
2 − ḡijūiūj = 1, ūi = v̄i,

ū0 depends on the choice N̄ of the lapse on M.
Einstein - dust development (V, g, r, u) of (M, ḡ, k̄, r̄, v̄): solution of

the Einstein - dust equations such that M identified with an embedded sub-
manifold of (V, g), ḡ and k̄ are the induced metric and extrinsic curvature on
M , r̄ is the function induced by r on M and v̄ is the projection on M of ū,
value of u on M.
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Constraints.

Momentum constraint

∇̄.k̄ − ∇̄trk̄ − N̄−1r̄ū0v̄ = 0,

Hamiltonian constraint

R(ḡ)− |k̄|2ḡ + (trḡk̄)2 − 2N̄−2r̄(ū0)
2 = 0,

Depend only on initial data
Conformal method, τ = Tracek̄, g̃, k̃ given.

ḡij = ϕ
4

n−2 g̃ij, k̄ij = ϕ−2k̃ij +
1

n
ḡijτ .

ũ, r̃? Ñ?
Ñ−2(ũ0)

2 − g̃ijũiũj = 1.

satisfied, for any choice of Ñ , by

ũi = ϕ−
2

n−2 ūi, N̄−1ū0 = Ñ−1ũ0.
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The momentum J̄ reads then

J̄i := N̄−1r̄ū0ūi = ϕ
2

n−2 Ñ−1ũ0ũir̄.

This momentum is York scaled if r̃ is defined by

r̄ = ϕ
−2(n+1)

n−2 r̃.

Physical interpretation: equality on M of spacetime densities

r̄N̄detḡ
1
2 = r̃Ñ(detγ)

1
2

if N̄2 = ϕ
4

n−2 Ñ2, same factor as ḡ.
Source of Hamiltonian constraint then York scaled:

N̄2T̄ 00 ≡ r̄(N̄ ū0)2 = ϕ
−2(n+1)

n−2 r̃(Ñ ũ0)2.

The constraints decouple and known theorems apply.
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Evolution.

Theorem. The Einstein - dust equations in wave gauge form a hyperbolic
Leray system for g, u and r, which is causal as long as g is Lorentzian and
u is timelike.

Proof. The equations are: R
(h)
αβ ≡

−1

2
gλµ∇ρ∂

2
λµgαβ + Hαβ(g, ∂g) = r(uαuβ +

1

n− 1
gαβ) ((1))

uα∇αuβ = 0, ((2))

uα∂αr + r∇αuα = 0. ((3))

Replace (1) using (2) by

uρ∇ρR
(h)
αβ = (uρ∇ρr)(uαuβ +

1

n− 1
gαβ) ((4))
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Give to equations and unknowns the Leray - Volevic indices

`(g) = 3, `(u) = 2, `(r) = 1.

m(4) = 0, m(2) = 1, m(3) = 0,

The matrix of principal parts of the various orders ` − m is then diagonal
and given by 


−1

2
gλµuγ∂3

γλµgαβ 0 0
0 uα∂αuβ 0
0 0 uα∂αr


 .

Hyperbolic system if g is Lorentzian and u timelike.
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Corollary. One and only one solution, g in wave gauge, globally hyper-
bolic, development of the initial data set (M, ḡ ∈ Ms, k̄ ∈ H loc

s−1, v̄ ∈ H loc
s−1,

|v̄|ḡ < 1, r̄ ∈ H loc
s−2), s > n

2
+ 2, lapse, shift and first derivatives given on M

such that the wave gauge conditions are satisfied initially.
Bianchi identities imply that a solution in wave gauge, satisfy the original

Einstein - dust system if the initial data satisfy the Einstein constraints.
Unicity, up to diffeomorphism, in the class of maximal globally hyperbolic

spacetimes if s > n
2

+ 3. Remark that the vectors ū and ū∗ corresponding to
the same v̄ and two spacetime metrics isometric under a diffeomorphism f
are mapped onto each other by f..
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Case of isolated bodies.

Suppose that r̄ vanishes on M\ω where ω is the union of disjoint relatively
compact subsets of M which represent the space occupied by material bodies.
While v̄ represents the physically well defined ‘matter flow velocity’ at points
of ω, it has no physical meaning at points of M\ω. The following theorem
says that neither g, nor r depend on the extension of v̄ to M , the same is
true of u in the geodesic tube, containing the support of r, based on ω.

Theorem. The spacetime metric g in wave gauge, the matter density r
and its support Ω, obtained in the existence theorem are uniquely determined
in a neighbourhood of M by

data on M of ḡ, k̄, lapse and shift and their first derivatives, and of
r̄

datum v̄ on ω with ω̄ = supp(r̄).
The same is true for the vector field u but only in Ω.
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Proof. Suppose, ū∗ is another datum for u on M, with ū∗ = ū on ω. The
datum ḡ, k̄, v̄∗, r̄ determine a solution g∗, u∗, r∗ in a neighbourhood V∗ of M.
Consider the geodesics in the original metric g starting from M with tangent
vector ū∗. Since ū∗ = ū on ω, and the geodesic equation depends only on g,
u∗ = u in the geodesic tube Ω. The continuity equation, with u replaced by
u∗ and r̄ = r̄∗ on M, determines r∗; the functions r and r∗ have their support
in Ω, and coincide there, hence r∗ = r on V .

The right hand side of Einstein equations unchanged if we replace u by
u∗, since r = 0 where u 6= u∗. The fields g, u∗, r thus define on V∗ := V ∩U∗,
with U∗ the domain of existence of u∗, a solution with the star initial data,
by the uniqueness theorem this solution coincides with the solution g∗, u∗, r∗
. Therefore g = g∗ and r∗ = r on V∗. We have already seen that u = u∗ on
Ω.
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Remark 1. The Einstein - dust constraints on M do not depend on the
extension of v̄ at points where r̄ vanishes.

Remark 2 It is not expected that the domain of existence of the vector
field u∗ outside of Ω is the same for all possible extensions of v|ω to M . This
gauge choice may perhaps be used to optimize the domain of existence of the
solution.
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