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Absorbing outer boundaries
Replace unbounded domain with a compact domain plus
an artificial outer boundary.

Ideally, the artificial boundary is completely transparent to the physical
problem on the unbounded domain.

Realistically, shoot for boundary conditions (b.c.’s) which:
1. Form a well-posed initial boundary value problem (IBVP).
2. Insure that very little spurious reflection of gravitational radiation

occurs from the outer boundary.

L. T. Buchman, Absorbing outer boundaries in GR – p.4/30



Absorbing outer boundaries
Flat Space

1D wave equation
(

∂2
t − ∂2

x

)

u(t, x) = 0, t > 0, x ∈ [−1, 1].

General solution is superposition of left- and right-moving
solutions

u(t, x) = f↖(x+ t) + f↗(x− t),

so the b.c.’s

(∂t − ∂x)u(t,−1) = 0, (∂t + ∂x)u(t,+1) = 0,

are perfectly absorbing.
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Absorbing outer boundaries
Flat Space

3D wave equation (much more difficult because of modes
propagating tangential to the boundary!)
Spherical harmonic decomposition

u(t, r, ϑ, ϕ) =
1

r

∞
∑

`=0

∑

|m|≤`

u`m(t, r)Y `m(ϑ, ϕ)

yields
(

∂2
t − ∂2

r +
`(`+ 1)

r2

)

u`m(t, r) = 0, t > 0, r ∈ (0, R).

Solutions can be generated from the 1D solutions by applying
suitable differential operators to them.
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Absorbing outer boundaries
Flat Space
Define the operators a` ≡ ∂r + `

r
, a†` ≡ −∂r + `

r
,

satisfying the identities

a`+1a
†
`+1 = a†`a` = −∂2

r +
`(`+ 1)

r2
.

So, for each ` = 1, 2, 3...,
[

∂2
t − ∂2

r +
`(`+ 1)

r2

]

a†`a
†
`−1...a

†
1 =

[

∂2
t + a†`a`

]

a†`a
†
`−1...a

†
1

= a†`

[

∂2
t + a†`−1a`−1

]

a†`−1...a
†
1

= a†`a
†
`−1...a

†
1

[

∂2
t − ∂2

r

]

.

L. T. Buchman, Absorbing outer boundaries in GR – p.7/30



Absorbing outer boundaries
Flat Space
Explicit in- and outgoing solutions:

φ↖,`(t, r) = a†`a
†
`−1...a

†
1V`(r + t),

φ↗,`(t, r) = a†`a
†
`−1...a

†
1U`(r − t).

Lemma
Let b− = r2(∂t + ∂r). Then, b`+1

− φ↗,`(t, r) = 0 for all ` = 0, 1, 2, ....

Therefore, given L ∈ {1, 2, 3, ...} the b.c.

BL : bL+1
− (ru)(t, r, ϑ, ϕ) = 0

∣

∣

r=R

leaves the outgoing solutions with ` ≤ L unaltered.
Can show that each b.c. BL yields a well posed problem.
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Absorbing outer boundaries
Flat Space

Therefore, BL is perfectly absorbing for waves with ` ≤ L.
Hierarchy of local b.c.’s with increasing order of accuracy.
Bayliss and Turkel, Comm. Pure and Appl. Math., 33, 707-725
(1980)
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Absorbing outer boundaries
General Relativity
A Challenging Problem!

The future geometry of the outer boundary is not known a priori.
Constraint modes propagate across the boundary.
“Outgoing” and “ingoing” radiation is difficult to define because of
nonlinearities and gauge freedom.
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Absorbing outer boundaries
General Relativity

CPBC & b.c.’s on the gravitational radiation:

Well-posed IBVP for Einstein’s vacuum field equations.
Friedrich and Nagy 1999
CPBC & ∂tΨ0=̂0 numerically implemented.
Kidder et al. 2005, Sarbach and Tiglio 2005, Lindblom et al. 2005,
Scheel et al. 2006, Rinne 2006
Hierarchy of local b.c.’s on Ψ0, which is exact for perturbations on
flat spacetime. When 1st order corrections for backscatter are
included, the b.c. for quadrupolar radiation gives significantly less
reflection than ∂tΨ0=̂0.
LTB and O. Sarbach, CQG, 23, 6709–6744 (2006) (this talk)
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Bianchi equations
Weak field gravity:

gµν = ηµν + hµν ,

where ηµν is the Minkowski metric and hµν is a small (|hµν | � 1)
perturbation. Neglect quadratic and higher order terms in hµν .

OK if boundary is far enough in the wave zone.
Let the domain be a ball BR of radius R.
Not absolutely necessary for our b.c.’s. In any case, modern
numerical relativity codes can handle spherical outer boundaries.
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Bianchi equations
Vacuum Bianchi equations:

∇aCabcd = 0,

where Cabcd is the linearized Weyl tensor.
Linearized Weyl tensor is invariant w.r.t. infinitesimal coordinate
transformations, so there are no gauge modes.
3 + 1 decomposition yields a symmetric hyperbolic first order
system similar to Maxwell’s equations.
Expand the linearized Weyl tensor in spherical tensor harmonics.
Group the 10 components of the linearized Weyl tensor into 5
complex scalars Ψ0, Ψ1, Ψ2, Ψ3, Ψ4, defined w.r.t. the null tetrad:
l = (∂t + ∂r)/

√
2, k = (∂t − ∂r)/

√
2, m, m̄.
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Bianchi equations

Result:

` = 0 and ` = 1: solutions are essentially non-dynamical.

` ≥ 2: dynamics described by two master equations.
From the solutions to these two equations, can reconstruct the
linearized Weyl tensor.
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Bianchi equations
Master Equations

Evolution of constraint violations:
[

4∂2
t − ∂2

r +
`(`+ 1)

r2

]

π(t, r) = 0.

Evolution of gravitational radiation:
[

∂2
t − ∂2

r +
`(`+ 1)

r2

]

ψ2(t, r) = S(t, r).

If constraints are satisfied, S(t, r) = 0 and the linearized Weyl
tensor is entirely determined by the solution ψ2 of the master
equation.
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Bianchi equations
Master Equations

Admit exact analytic solutions, obtained by applying differential
operators to solution of 1D flat wave equation (re. 1st sect.).

ψ2 ↖,`(t, r) =
1

r2
a†`a

†
`−1...a

†
1V`(r + t),

ψ2 ↗,`(t, r) =
1

r2
a†`a

†
`−1...a

†
1U`(r − t).

In- and outgoing solutions simply related by t 7→ −t.
Clear how to quantify amount of spurious reflection and define a
reflection coefficient.
Teukolsky formalism: more complicated!
Under time reversal, Ψ0 7→ conjugate Ψ4 and vice versa.
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Solutions to IBVP
Use the exact solutions to construct solutions to the IBVP on BR

corresponding to different boundary conditions on Ψ0 at ∂BR

(assuming CPBC in place).
For our exact outgoing solutions, can show that along outgoing
null geodesics (t− r = const.)

Ψj = O(rj−5), j = 0, 1, 2, 3, 4. peeling theorem, Penrose, 1965.

Start with the b.c. ∂tΨ0=̂0.
The exact outgoing solutions do not satisfy this b.c. exactly:
Ψ0 falls off as 1/r5 along the outgoing null radial geodesics.
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Solutions to IBVP
Reflection Coefficients for b.c. ∂tΨ0=̂0

A solution to the IBVP corresponding to the b.c. ∂tΨ0=̂0 consists
of a superposition of an out- and an ingoing wave.

To quantify the amount of reflection, make the monochromatic
ansatz

ψ2(t, r) = a†`a
†
`−1...a

†
1

(

eik(r−t) + γe−ik(r+t)
)

,

where γ is an amplitude reflection coefficient

≡ ingoing wave amplitude
outgoing wave amplitude .
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Solutions to IBVP
Reflection coefficients for b.c. ∂tΨ0=̂0:

q ≡ |γ| =
∣

∣

∣

p`,−2(−ikR)

p`,2(ikR)

∣

∣

∣

where the polynomials p`,m(z), |m| ≤ `, are given by

p`,m(z) =
`+m
∑

j=0

(`+m)! (2`− j)!

(`+m− j)! j!
(2z)j .

|γ| is of order unity if kR < `, and decays as (kR)−4 for large
kR/`.
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q vs. kR/` for b.c. ∂tΨ0=̂0
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q vs. kR/` for b.c. ∂tΨ0=̂0
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q vs. kR/` for b.c. ∂tΨ0=̂0
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Solutions to IBVP
Hierarchy BL of improved b.c.’s

New b.c. BL which, for L ≥ 2, improve the ∂tΨ0=̂0 b.c., being
perfectly absorbing for linearized gravitational radiation in flat
space (assumed near the outer boundary) with ` ≤ L.

BL : (b−)L−1(r5Ψ0) = 0
∣

∣

r=R
.

Relation between Ψ0 and ψ2:

r5Ψ0 ∼ (b−)2ψ2, b− = r2(∂t + ∂r).

Setting ∂tΨ0=̂0 corresponds to the Bayliss-Turkel b.c. on ψ2 for
L = 1.
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Solutions to IBVP
In numerical simulations, expect the few lower multipoles to
dominate, so an implementation of this b.c. for L = 2, 3 or 4

should suppress much of the spurious reflection.
For L = 2:

(∂t + ∂r)∂t(r
5Ψ0) = 0.

Reflection coefficients for ` > L: decay as (kR)−2(L+1) for large
kR.
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Backscatter
Outer boundary lies in the weak field regime => can describe the
background near the outer boundary by the Schwarzschild metric
with mass M , where M represents the total mass of the system.

R: radius of outer boundary.
Compute first order corrections in 2M/R to the exact in- and
outgoing solutions with ` = 2, then re-calculate reflection
coefficients.
Result (∂tΨ0=̂0) b.c.:
For 2M/R� 1, the corrected ` = 2 reflection coefficient depends
only weakly on 2M/R.
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q vs. kR & 2M/R (` = 2, ∂tΨ0=̂0)
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Backscatter
Result (B2 new b.c.):
Reflection coefficient is smaller than the b.c. ∂tΨ0=̂0

by a factor of M/R for kR > 1.05.
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Conclusions
Estimate amount of spurious reflection off an artificial outer
boundary with the b.c. ∂tΨ0=̂0.

Propose a hierarchy BL (L = 2, 3, 4, ...) of new local b.c.’s which
are perfectly absorbing for linearized waves with ` ≤ L on a flat
background.

Including backscatter (to 1st order), these new b.c.’s give a
reflection coefficient which is smaller than the one for ∂tΨ0=̂0 by a
factor of M/R for kR > 1.05.
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Conclusions

For binary black hole simulations:

New b.c.’s BL can be applied to any formulation of the full
nonlinear Einstein equations, so long as CPBC are also
implemented, and the foliation near the outer boundary resemble
the t = const. foliation of Minkowski space.
Implementation of BL may improve accuracy.
Reflection coefficients provide a way to compute the error in the
energy flux due to spurious reflections.
BL may also be useful to minimize reflections of “junk” radiation
present in the initial data.
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Conclusions

Outlook:
Still a lot of work ahead!

Numerical implementation and tests.
Improve b.c.’s even more so that they are perfectly absorbing
when 1st order corrections for backscatter are included
(preliminary results).
Include nonlinearities (tails).
Generalize analysis to other foliations of Minkowski spacetime.
More general outer boundary shapes (not just metric spheres).
Well posedness proof for full nonlinear case.
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