Towards Absorbing Outer Boundaries in General Relativity

From Geometry to Numerics
 Paris, 21 November 2006

Luisa T. Buchman
University of Texas, Austin, Texas USA

with
Olivier C. A. Sarbach
Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México

Outline

- Absorbing outer boundaries
- Bianchi equations
- Solutions to IBVP
- Backscatter
- Conclusions

Absorbing outer boundaries

Ideal outer boundary is transparent

Absorbing outer boundaries

Ideal outer boundary is transparent

Absorbing outer boundaries

Replace unbounded domain with a compact domain plus an artificial outer boundary.

Ideally, the artificial boundary is completely transparent to the physical problem on the unbounded domain.

Realistically, shoot for boundary conditions (b.c.'s) which:

1. Form a well-posed initial boundary value problem (IBVP).
2. Insure that very little spurious reflection of gravitational radiation occurs from the outer boundary.

Absorbing outer boundaries

Flat Space

- 1D wave equation

$$
\left(\partial_{t}^{2}-\partial_{x}^{2}\right) u(t, x)=0, \quad t>0, x \in[-1,1] .
$$

General solution is superposition of left- and right-moving solutions

$$
u(t, x)=f_{\nwarrow}(x+t)+f_{\nearrow}(x-t),
$$

so the b.c.'s

$$
\left(\partial_{t}-\partial_{x}\right) u(t,-1)=0, \quad\left(\partial_{t}+\partial_{x}\right) u(t,+1)=0
$$

are perfectly absorbing.

Absorbing outer boundaries

Flat Space

- 3D wave equation (much more difficult because of modes propagating tangential to the boundary!)
Spherical harmonic decomposition

$$
u(t, r, \vartheta, \varphi)=\frac{1}{r} \sum_{\ell=0}^{\infty} \sum_{|m| \leq \ell} u_{\ell m}(t, r) Y^{\ell m}(\vartheta, \varphi)
$$

yields

$$
\left(\partial_{t}^{2}-\partial_{r}^{2}+\frac{\ell(\ell+1)}{r^{2}}\right) u_{\ell m}(t, r)=0, \quad t>0, r \in(0, R) .
$$

Solutions can be generated from the 1D solutions by applying suitable differential operators to them.

Absorbing outer boundaries

Flat Space

Define the operators $a_{\ell} \equiv \partial_{r}+\frac{\ell}{r}, \quad a_{\ell}^{\dagger} \equiv-\partial_{r}+\frac{\ell}{r}$,
satisfying the identities

$$
a_{\ell+1} a_{\ell+1}^{\dagger}=a_{\ell}^{\dagger} a_{\ell}=-\partial_{r}^{2}+\frac{\ell(\ell+1)}{r^{2}} .
$$

So, for each $\ell=1,2,3 \ldots$,

$$
\begin{aligned}
{\left[\partial_{t}^{2}-\partial_{r}^{2}+\frac{\ell(\ell+1)}{r^{2}}\right] a_{\ell}^{\dagger} a_{\ell-1}^{\dagger} \ldots a_{1}^{\dagger} } & =\left[\partial_{t}^{2}+a_{\ell}^{\dagger} a_{\ell}\right] a_{\ell}^{\dagger} a_{\ell-1}^{\dagger} \ldots a_{1}^{\dagger} \\
& =a_{\ell}^{\dagger}\left[\partial_{t}^{2}+a_{\ell-1}^{\dagger} a_{\ell-1}\right] a_{\ell-1}^{\dagger} \ldots a_{1}^{\dagger} \\
& =a_{\ell}^{\dagger} a_{\ell-1}^{\dagger} \ldots a_{1}^{\dagger}\left[\partial_{t}^{2}-\partial_{r}^{2}\right] .
\end{aligned}
$$

Absorbing outer boundaries

Flat Space

Explicit in- and outgoing solutions:

$$
\begin{aligned}
\phi_{\nwarrow, \ell}(t, r) & =a_{\ell}^{\dagger} a_{\ell-1}^{\dagger} \ldots a_{1}^{\dagger} V_{\ell}(r+t), \\
\phi_{\nearrow, \ell}(t, r) & =a_{\ell}^{\dagger} a_{\ell-1}^{\dagger} \ldots a_{1}^{\dagger} U_{\ell}(r-t) .
\end{aligned}
$$

- Lemma

Let $b_{-}=r^{2}\left(\partial_{t}+\partial_{r}\right)$. Then, $b_{-}^{\ell+1} \phi_{\nearrow}, \ell(t, r)=0$ for all $\ell=0,1,2, \ldots$.

Absorbing outer boundaries

Flat Space

Explicit in- and outgoing solutions:

$$
\begin{aligned}
\phi \overline{\wedge, \ell}(t, r) & =a_{\ell}^{\dagger} a_{\ell-1}^{\dagger} \ldots a_{1}^{\dagger} V_{\ell}(r+t), \\
\phi_{\nearrow, \ell}(t, r) & =a_{\ell}^{\dagger} a_{\ell-1}^{\dagger} \cdots a_{1}^{\dagger} U_{\ell}(r-t) .
\end{aligned}
$$

- Lemma

Let $b_{-}=r^{2}\left(\partial_{t}+\partial_{r}\right)$. Then, $b_{-}^{\ell+1} \phi_{\nearrow, \ell}(t, r)=0$ for all $\ell=0,1,2, \ldots$.

- Therefore, given $L \in\{1,2,3, \ldots\}$ the b.c.

$$
\mathcal{B}_{L}: \quad b_{-}^{L+1}(r u)(t, r, \vartheta, \varphi)=\left.0\right|_{r=R}
$$

leaves the outgoing solutions with $\ell \leq L$ unaltered.

Absorbing outer boundaries

Flat Space

Explicit in- and outgoing solutions:

$$
\begin{aligned}
\phi \overline{\wedge, \ell}(t, r) & =a_{\ell}^{\dagger} a_{\ell-1}^{\dagger} \ldots a_{1}^{\dagger} V_{\ell}(r+t), \\
\phi_{\nearrow, \ell}(t, r) & =a_{\ell}^{\dagger} a_{\ell-1}^{\dagger} \cdots a_{1}^{\dagger} U_{\ell}(r-t) .
\end{aligned}
$$

- Lemma

Let $b_{-}=r^{2}\left(\partial_{t}+\partial_{r}\right)$. Then, $b_{-}^{\ell+1} \phi_{\nearrow, \ell}(t, r)=0$ for all $\ell=0,1,2, \ldots$.

- Therefore, given $L \in\{1,2,3, \ldots\}$ the b.c.

$$
\mathcal{B}_{L}: \quad b_{-}^{L+1}(r u)(t, r, \vartheta, \varphi)=\left.0\right|_{r=R}
$$

leaves the outgoing solutions with $\ell \leq L$ unaltered.

- Can show that each b.c. \mathcal{B}_{L} yields a well posed problem.

Absorbing outer boundaries

Flat Space

- Therefore, \mathcal{B}_{L} is perfectly absorbing for waves with $\ell \leq L$.
- Hierarchy of local b.c.'s with increasing order of accuracy.

Absorbing outer boundaries

General Relativity A Challenging Problem!

- The future geometry of the outer boundary is not known a priori.
- Constraint modes propagate across the boundary.
- "Outgoing" and "ingoing" radiation is difficult to define because of nonlinearities and gauge freedom.

Absorbing outer boundaries

General Relativity

CPBC \& b.c.'s on the gravitational radiation:

- Well-posed IBVP for Einstein's vacuum field equations.
- CPBC \& $\partial_{t} \Psi_{0} \hat{=} 0$ numerically implemented. Lindblom et al. 2005,
- Hierarchy of local b.c.'s on Ψ_{0}, which is exact for perturbations on flat spacetime. When 1st order corrections for backscatter are included, the b.c. for quadrupolar radiation gives significantly less reflection than $\partial_{t} \Psi_{0} \hat{=} 0$.
LTB and O. Sarbach, CQG, 23, 6709-6744 (2006) (this talk)

Bianchi equations

- Weak field gravity:

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu},
$$

where $\eta_{\mu \nu}$ is the Minkowski metric and $h_{\mu \nu}$ is a small $\left(\left|h_{\mu \nu}\right| \ll 1\right)$ perturbation. Neglect quadratic and higher order terms in $h_{\mu \nu}$.

Bianchi equations

- Weak field gravity:

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu},
$$

where $\eta_{\mu \nu}$ is the Minkowski metric and $h_{\mu \nu}$ is a small $\left(\left|h_{\mu \nu}\right| \ll 1\right)$ perturbation. Neglect quadratic and higher order terms in $h_{\mu \nu}$.

Bianchi equations

- Weak field gravity:

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu},
$$

where $\eta_{\mu \nu}$ is the Minkowski metric and $h_{\mu \nu}$ is a small $\left(\left|h_{\mu \nu}\right| \ll 1\right)$ perturbation. Neglect quadratic and higher order terms in $h_{\mu \nu}$.

- Let the domain be a ball B_{R} of radius R.

Bianchi equations

- Weak field gravity:

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu},
$$

where $\eta_{\mu \nu}$ is the Minkowski metric and $h_{\mu \nu}$ is a small $\left(\left|h_{\mu \nu}\right| \ll 1\right)$ perturbation. Neglect quadratic and higher order terms in $h_{\mu \nu}$.

- Let the domain be a ball B_{R} of radius R.

Bianchi equations

- Vacuum Bianchi equations:

$$
\nabla^{a} C_{a b c d}=0,
$$

where $C_{a b c d}$ is the linearized Weyl tensor.

- Linearized Weyl tensor is invariant w.r.t. infinitesimal coordinate transformations, so there are no gauge modes.
- $3+1$ decomposition yields a symmetric hyperbolic first order system similar to Maxwell's equations.
- Expand the linearized Weyl tensor in spherical tensor harmonics.
- Group the 10 components of the linearized Weyl tensor into 5 complex scalars $\Psi_{0}, \Psi_{1}, \Psi_{2}, \Psi_{3}, \Psi_{4}$, defined w.r.t. the null tetrad: $l=\left(\partial_{t}+\partial_{r}\right) / \sqrt{2}, k=\left(\partial_{t}-\partial_{r}\right) / \sqrt{2}, m, \bar{m}$.

Bianchi equations

Result:

- $\ell=0$ and $\ell=1$: solutions are essentially non-dynamical.
- $\quad \ell \geq 2$: dynamics described by two master equations.

From the solutions to these two equations, can reconstruct the linearized Weyl tensor.

Bianchi equations

Master Equations

- Evolution of constraint violations:

$$
\left[4 \partial_{t}^{2}-\partial_{r}^{2}+\frac{\ell(\ell+1)}{r^{2}}\right] \pi(t, r)=0 .
$$

- Evolution of gravitational radiation:

$$
\left[\partial_{t}^{2}-\partial_{r}^{2}+\frac{\ell(\ell+1)}{r^{2}}\right] \psi_{2}(t, r)=S(t, r) .
$$

- If constraints are satisfied, $S(t, r)=0$ and the linearized Weyl tensor is entirely determined by the solution ψ_{2} of the master equation.

Bianchi equations

Master Equations

- Admit exact analytic solutions, obtained by applying differential operators to solution of 1D flat wave equation (re. 1st sect.).

$$
\begin{aligned}
& \psi_{2} \backslash, \ell(t, r)=\frac{1}{r^{2}} a_{\ell}^{\dagger} a_{\ell-1}^{\dagger} \ldots a_{1}^{\dagger} V_{\ell}(r+t), \\
& \psi_{2} \nearrow, \ell(t, r)=\frac{1}{r^{2}} a_{\ell}^{\dagger} a_{\ell-1}^{\dagger} \ldots a_{1}^{\dagger} U_{\ell}(r-t) .
\end{aligned}
$$

- In- and outgoing solutions simply related by $t \mapsto-t$.
- Clear how to quantify amount of spurious reflection and define a reflection coefficient.
- Teukolsky formalism: more complicated!

Under time reversal, $\Psi_{0} \mapsto$ conjugate Ψ_{4} and vice versa.

Solutions to IBVP

- Use the exact solutions to construct solutions to the IBVP on B_{R} corresponding to different boundary conditions on Ψ_{0} at ∂B_{R} (assuming CPBC in place).
- For our exact outgoing solutions, can show that along outgoing null geodesics ($t-r=$ const.)

$$
\Psi_{j}=O\left(r^{j-5}\right), \quad j=0,1,2,3,4 .
$$

Penrose, 1965.

- Start with the b.c. $\partial_{t} \Psi_{0} \hat{=} 0$.
- The exact outgoing solutions do not satisfy this b.c. exactly: Ψ_{0} falls off as $1 / r^{5}$ along the outgoing null radial geodesics.

Solutions to IBVP

Reflection Coefficients for b.c. $\partial_{t} \Psi_{0} \hat{=} 0$

- A solution to the IBVP corresponding to the b.c. $\partial_{t} \Psi_{0} \hat{=} 0$ consists of a superposition of an out- and an ingoing wave.
- To quantify the amount of reflection, make the monochromatic ansatz

$$
\psi_{2}(t, r)=a_{\ell}^{\dagger} a_{\ell-1}^{\dagger} \ldots a_{1}^{\dagger}\left(e^{i k(r-t)}+e^{-i k(r+t)}\right),
$$

where is an amplitude reflection coefficient
$\equiv \frac{\text { ingoing wave amplitude }}{\text { outgoing wave amplitude }}$.

Solutions to IBVP

- Reflection coefficients for b.c. $\partial_{t} \Psi_{0} \hat{=} 0$:

$$
q \equiv|\gamma|=\left|\frac{p_{\ell,-2}(-i k R)}{p_{\ell, 2}(i k R)}\right|
$$

where the polynomials $p_{\ell, m}(z),|m| \leq \ell$, are given by

$$
p_{\ell, m}(z)=\sum_{j=0}^{\ell+m} \frac{(\ell+m)!(2 \ell-j)!}{(\ell+m-j)!j!}(2 z)^{j} .
$$

- $|\gamma|$ is of order unity if $k R<\ell$, and decays as $(k R)^{-4}$ for large $k R / \ell$.

q vs. $k R / \ell$ for b.c. $\partial_{t} \Psi_{0} \hat{=} 0$

q vs. $k R / \ell$ for b.c. $\partial_{t} \Psi_{0} \hat{=} 0$

q vs. $k R / \ell$ for b.c. $\partial_{t} \Psi_{0} \hat{\underline{=}} 0$

Solutions to IBVP

Hierarchy \mathcal{B}_{L} of improved b.c.'s

- New b.c. \mathcal{B}_{L} which, for $L \geq 2$, improve the $\partial_{t} \Psi_{0} \hat{=} 0$ b.c., being perfectly absorbing for linearized gravitational radiation in flat space (assumed near the outer boundary) with $\ell \leq L$.

$$
\mathcal{B}_{L}: \quad\left(b_{-}\right)^{L-1}\left(r^{5} \Psi_{0}\right)=\left.0\right|_{r=R} .
$$

- Relation between Ψ_{0} and ψ_{2} :

$$
r^{5} \Psi_{0} \sim\left(b_{-}\right)^{2} \psi_{2}, \quad b_{-}=r^{2}\left(\partial_{t}+\partial_{r}\right) .
$$

- Setting $\partial_{t} \Psi_{0} \hat{=} 0$ corresponds to the Bayliss-Turkel b.c. on ψ_{2} for $L=1$.

Solutions to IBVP

- In numerical simulations, expect the few lower multipoles to dominate, so an implementation of this b.c. for $L=2,3$ or 4 should suppress much of the spurious reflection.
- For $L=2$:

$$
\left(\partial_{t}+\partial_{r}\right) \partial_{t}\left(r^{5} \Psi_{0}\right)=0
$$

- Reflection coefficients for $\ell>L$: decay as $(k R)^{-2(L+1)}$ for large $k R$.

Backscatter

- Outer boundary lies in the weak field regime => can describe the background near the outer boundary by the Schwarzschild metric with mass M, where M represents the total mass of the system.

Backscatter

- Outer boundary lies in the weak field regime => can describe the background near the outer boundary by the Schwarzschild metric with mass M, where M represents the total mass of the system.
- R : radius of outer boundary.

Backscatter

- Outer boundary lies in the weak field regime => can describe the background near the outer boundary by the Schwarzschild metric with mass M, where M represents the total mass of the system.
- R : radius of outer boundary.
- Compute first order corrections in $2 M / R$ to the exact in- and outgoing solutions with $\ell=2$, then re-calculate reflection coefficients.

Backscatter

- Outer boundary lies in the weak field regime => can describe the background near the outer boundary by the Schwarzschild metric with mass M, where M represents the total mass of the system.
- R : radius of outer boundary.
- Compute first order corrections in $2 M / R$ to the exact in- and outgoing solutions with $\ell=2$, then re-calculate reflection coefficients.
- Result $\left(\partial_{t} \Psi_{0} \hat{=} 0\right)$ b.c.:

For $2 M / R \ll 1$, the corrected $\ell=2$ reflection coefficient depends only weakly on $2 M / R$.

q vs. $k R \& 2 M / R\left(\ell=2, \partial_{t} \Psi_{0} \hat{=} 0\right)$

Backscatter

- Result (\mathcal{B}_{2} new b.c.):

Reflection coefficient is smaller than the b.c. $\partial_{t} \Psi_{0} \hat{=} 0$ by a factor of M / R for $k R>1.05$.

Conclusions

- Estimate amount of spurious reflection off an artificial outer boundary with the b.c. $\partial_{t} \Psi_{0} \hat{=} 0$.
- Propose a hierarchy $\mathcal{B}_{L}(L=2,3,4, \ldots)$ of new local b.c.'s which are perfectly absorbing for linearized waves with $\ell \leq L$ on a flat background.
- Including backscatter (to 1st order), these new b.c.'s give a reflection coefficient which is smaller than the one for $\partial_{t} \Psi_{0} \hat{=} 0$ by a factor of M / R for $k R>1.05$.

Conclusions

For binary black hole simulations:

- New b.c.'s \mathcal{B}_{L} can be applied to any formulation of the full nonlinear Einstein equations, so long as CPBC are also implemented, and the foliation near the outer boundary resemble the $t=$ const. foliation of Minkowski space.
- Implementation of \mathcal{B}_{L} may improve accuracy.
- Reflection coefficients provide a way to compute the error in the energy flux due to spurious reflections.
- \mathcal{B}_{L} may also be useful to minimize reflections of "junk" radiation present in the initial data.

Conclusions

Outlook:

- Still a lot of work ahead!

Conclusions

Outlook:

- Still a lot of work ahead!
- Numerical implementation and tests.

Conclusions

Outlook:

- Still a lot of work ahead!
- Numerical implementation and tests.
- Improve b.c.'s even more so that they are perfectly absorbing when 1 st order corrections for backscatter are included (preliminary results).

Conclusions

Outlook:

- Still a lot of work ahead!
- Numerical implementation and tests.
- Improve b.c.'s even more so that they are perfectly absorbing when 1 st order corrections for backscatter are included (preliminary results).
- Include nonlinearities (tails).

Conclusions

Outlook:

- Still a lot of work ahead!
- Numerical implementation and tests.
- Improve b.c.'s even more so that they are perfectly absorbing when 1 st order corrections for backscatter are included (preliminary results).
- Include nonlinearities (tails).
- Generalize analysis to other foliations of Minkowski spacetime.

Conclusions

Outlook:

- Still a lot of work ahead!
- Numerical implementation and tests.
- Improve b.c.'s even more so that they are perfectly absorbing when 1 st order corrections for backscatter are included (preliminary results).
- Include nonlinearities (tails).
- Generalize analysis to other foliations of Minkowski spacetime.
- More general outer boundary shapes (not just metric spheres).

Conclusions

Outlook:

- Still a lot of work ahead!
- Numerical implementation and tests.
- Improve b.c.'s even more so that they are perfectly absorbing when 1 st order corrections for backscatter are included (preliminary results).
- Include nonlinearities (tails).
- Generalize analysis to other foliations of Minkowski spacetime.
- More general outer boundary shapes (not just metric spheres).
- Well posedness proof for full nonlinear case.

