GRAVITATIONAL RECOIL OF BINARY BLACK HOLES

Luc Blanchet

Gravitation et Cosmologie ($\mathcal{G} \mathbb{R} \varepsilon \mathbb{C O}$)
CNRS / Institut d'Astrophysique de Paris

23 novembre 2006

Based on Gravitational recoil of inspiralling black-hole binaries to second-post-Newtonian order [Blanchet, Qusailah \& Will 2005]

Digest on the history of gravitational recoil

(1) General formalisms

- Near-zone computation of recoil in linearized gravity [Peres 1958]
- Flux computations of recoil as interaction between quadrupole and octupole moments [Bonnor \& Rotenberg 1961, Papapetrou 1971]
- General multipole expansion ($\forall \ell \geq 2$) of linear momentum flux [Thorne 1080]
- Radiation-reaction computation of recoil and linear momentum balance equation [Blanchet 1996]
(2) Core collapse to BH
- $V_{\text {recoil }} \lesssim 300 \mathrm{~km} / \mathrm{s}$ (PN calculation) [Bekenstein 1973]
- Perturbation of Oppenheimer-Snyder collapse to BH [Moncrief 1979]
(3) Compact binary systems
- Recoil for point-mass binaries in Newtonian approximation [Fitchett 1983]
- Recoil for particle around Kerr BH (perturbation theory) [Fitchett \& Detweiler 1984]
- Particle falling on symmetric axis of Kerr [Nakamura \& Haugan 1983]
- 1PN calculation to the recoil from point-mass binaries [Wiseman 1992]
- Contributions of spins (PN calculation) [Kidder 1995]

Recent calculations in the case of compact binaries

(1) Analytical or semi-analytical

- Perturbation calculation $(\mu \ll M)$ of recoil during final plunge of two BH [Favata, Hughes \& Holz 2004]
- 2PN calculation and estimate of the contribution of the plunge phase [Blanchet, Qusailah \& Will 2005] (this work)
- Application of the effective-one-body (EOB) approach [Damour \& Gopakumar 2006]
(2) Numerical
- Perturbation/full numerical (Lazarus code) [Campanelli \& Lousto 2004]
- Binary BH grand challenge [Baker, Centrella, Choi, Koppitz, van Meter \& Miller 2006]
- Binary BH grand challenge [Gonzalez, Sperhake, Bruegmann, Hannam \& Husa 2006]
- Close limit approximation [Sopuerta, Yunes \& Laguna 2006]

Flux of linear momentum

(1) Use stress-energy tensor of GWs

$$
T_{\mu \nu}^{\mathrm{GW}}=\frac{1}{32 \pi}\left\langle\partial_{\mu} h_{i j}^{\mathrm{TT}} \partial_{\nu} h_{i j}^{\mathrm{TT}}\right\rangle
$$

(2) Derive the linear momentum loss as surface integral at infinity

$$
\left(\frac{d P^{i}}{d t}\right)^{\mathrm{GW}}=-r^{2} \int d \Omega n^{i} T_{00}^{\mathrm{GW}}
$$

General expression in terms of radiative moments U_{L} and V_{L} [Thorne 1980]

$$
\left(\frac{d P^{i}}{d t}\right)^{\mathrm{GW}}=\sum_{\ell=2}^{+\infty} \frac{1}{c^{2 \ell+3}}\left\{\alpha_{\ell} U_{i L}^{(1)} U_{L}^{(1)}+\beta_{\ell} \varepsilon_{i j k} U_{j L-1}^{(1)} V_{k L-1}^{(1)}+\frac{\gamma_{\ell}}{c^{2}} V_{i L}^{(1)} V_{L}^{(1)}\right\}
$$

Note that the multipolar order (ℓ) scales with the PN order $\left(c^{-1}\right)$

Linear momentum flux at Newtonian order

- The radiative moments U_{L}, V_{L} reduce to the source multipole moments

$$
\begin{aligned}
& U_{L}=I_{L}^{(\ell)}+\mathcal{O}\left(\frac{1}{c^{3}}\right) \\
& V_{L}=J_{L}^{(\ell)}+\mathcal{O}\left(\frac{1}{c^{3}}\right)
\end{aligned}
$$

- The source moments I_{L}, J_{L} take on their usual Newtonian expressions

$$
\begin{aligned}
& I_{L}=\int d^{3} x \rho \hat{x}_{L}+\mathcal{O}\left(\frac{1}{c^{2}}\right) \\
& J_{L}=\varepsilon_{k l\left\langle i_{\ell}\right.} \int d^{3} x \rho v_{k} \hat{x}_{L-1\rangle l}+\mathcal{O}\left(\frac{1}{c^{2}}\right)
\end{aligned}
$$

- The "Newtonian" linear momentum flux takes the expression

$$
\left(\frac{d P^{i}}{d t}\right)^{\mathrm{GW}}=\underbrace{\frac{1}{c^{7}}\left[\frac{2}{63} I_{i j k}^{(4)} I_{j k}^{(3)}+\frac{16}{45} \varepsilon_{i j k} I_{j k}^{(4)} J_{k l}^{(3)}\right]}_{\text {corresponds to a 3.5PN radiation reaction effect }}+\mathcal{O}\left(\frac{1}{c^{9}}\right)
$$

Radiation-reaction calculation of the recoil

- To 3.5PN order the radiation reaction force is electromagnetic-like with both scalar $V_{\text {reac }}$ and vectorial $A_{\text {reac }}^{i}$ potentials [Blanchet \& Damour 1984]
- In a certain gauge the radiation reaction potentials are [Blanchet 1997]

$$
\begin{aligned}
V_{\text {reac }} & =-\frac{1}{5 c^{5}} x^{i j} I_{i j}^{(5)}+\frac{1}{c^{7}}\left[\frac{1}{189} x^{i j k} I_{i j k}^{(7)}+\frac{1}{70} x^{2} x^{i j} I_{i j}^{(7)}\right]+\mathcal{O}\left(\frac{1}{c^{9}}\right) \\
A_{\text {reac }}^{i} & =\frac{1}{21 c^{7}} \hat{x}^{i j k} I_{i j k}^{(6)}+\frac{4}{45 c^{7}} \varepsilon_{i j k} x^{j l} J_{k l}^{(5)}+\mathcal{O}\left(\frac{1}{c^{9}}\right)
\end{aligned}
$$

- The total recoil force (integrated over the source) is

$$
F_{\text {reac }}^{i}=-\underbrace{\frac{1}{c^{7}}\left[\frac{2}{63} I_{i j k}^{(4)} I_{j k}^{(3)}+\frac{16}{45} \varepsilon_{i j k} I_{j k}^{(4)} J_{k l}^{(3)}\right]}_{\text {agrees with the Newtonian flux calculation }}+\mathcal{O}\left(\frac{1}{c^{9}}\right)
$$

Gravitational recoil of BH binaries (Newtonian order)

The linear momentum ejection is in the direction of the lighter mass' velocity

In the Newtonian approximation [with $f(\eta) \equiv \eta^{2} \sqrt{1-4 \eta}$]

$$
\begin{aligned}
V_{\text {recoil }} & =20 \mathrm{~km} / \mathrm{s}\left(\frac{6 M}{r}\right)^{4} \frac{f(\eta)}{f_{\max }} \\
& =1500 \mathrm{~km} / \mathrm{s}\left(\frac{2 M}{r}\right)^{4} \frac{f(\eta)}{f_{\max }} \quad \text { [Fitchett 1983] }
\end{aligned}
$$

Very interesting result which shows the astrophysical relevance of GW recoil but illustrates the fact that the recoil is mainly generated in the strong field region

Linear momentum flux to 2 PN order

(1) We need to include higher-order radiative moments

$$
\begin{aligned}
\left(\frac{d P^{i}}{d t}\right)^{\mathrm{GW}} & \sim \frac{1}{c^{7}}\left[U_{i j k}^{(1)} U_{j k}^{(1)}+\varepsilon_{i j k} U_{j l}^{(1)} V_{k l}^{(1)}\right] \\
& +\frac{1}{c^{9}}\left[U_{i j k l}^{(1)} U_{j k l}^{(1)}+\varepsilon_{i j k} U_{j l m}^{(1)} V_{k l m}^{(1)}+V_{i j k}^{(1)} V_{j k}^{(1)}\right] \\
& +\frac{1}{c^{11}}\left[U_{i j k l m}^{(1)} U_{j k l m}^{(1)}+\varepsilon_{i j k} U_{j l m n}^{(1)} V_{k l m n}^{(1)}+V_{i j k l}^{(1)} V_{j k l}^{(1)}\right]
\end{aligned}
$$

(2) To 2 PN order the tail contributions are

$$
\begin{aligned}
U_{i j} & =I_{i j}^{(2)}+\frac{2 G m}{c^{3}} \int_{-\infty}^{t} d \tau I_{i j}^{(4)}(\tau)\left[\ln \left(\frac{t-\tau}{2}\right)+\frac{11}{12}\right] \\
U_{i j k} & =I_{i j k}^{(3)}+\frac{2 G m}{c^{3}} \int_{-\infty}^{t} d \tau I_{i j k}^{(5)}(\tau)\left[\ln \left(\frac{t-\tau}{2}\right)+\frac{97}{60}\right] \\
V_{i j} & =J_{i j}^{(2)}+\frac{2 G m}{c^{3}} \int_{-\infty}^{t} d \tau J_{i j}^{(4)}(\tau)\left[\ln \left(\frac{t-\tau}{2}\right)+\frac{7}{6}\right]
\end{aligned}
$$

Application to compact binaries in circular orbits

All the required source multipole moments in the case of compact binaries on circular orbits are known [Blanchet, Iyer \& Joguet 2002, Arun, Blanchet, Iyer \& Qusailah 2004]

$$
\begin{aligned}
I_{i j}= & \eta m\left\{x^{\langle i j\rangle}\left[1+\gamma\left(-\frac{1}{42}-\frac{13}{14} \eta\right)+\gamma^{2}\left(-\frac{461}{1512}-\frac{18395}{1512} \eta-\frac{241}{1512} \eta^{2}\right)\right]\right. \\
& \left.+r^{2} v^{\langle i j\rangle}\left[\frac{11}{21}-\frac{11}{7} \eta+\gamma\left(\frac{1607}{378}-\frac{1681}{378} \eta+\frac{229}{378} \eta^{2}\right)\right]\right\} \\
I_{i j k}= & -\eta \delta m\left\{x^{\langle i j k\rangle}\left[1-\gamma \eta-\gamma^{2}\left(\frac{139}{330}+\frac{11923}{660} \eta+\frac{29}{110} \eta^{2}\right)\right]\right. \\
& \left.+r^{2} x^{\langle i} v^{j k\rangle}\left[1-2 \eta-\gamma\left(-\frac{1066}{165}+\frac{1433}{330} \eta-\frac{21}{55} \eta^{2}\right)\right]\right\}, \\
J_{i j}= & -\eta \delta m\left\{\varepsilon ^ { a b \langle i } x ^ { j \rangle a } v ^ { b } \left[1+\gamma\left(\frac{67}{28}-\frac{2}{7} \eta\right)\right.\right. \\
& \left.\left.+\gamma^{2}\left(\frac{13}{9}-\frac{4651}{252} \eta-\frac{1}{168} \eta^{2}\right)\right]\right\}
\end{aligned}
$$

where $\eta \equiv \mu / m$ (mass ratio) and $\gamma \equiv m / r$ (PN parameter)

Result for the 2PN linear momentum [Blanchet, Qusailah \& will 2005]

$$
+\underbrace{\left.\left(-\frac{71345}{22968}+\frac{36761}{2088} \eta+\frac{147101}{68904} \eta^{2}\right) x^{2}\right]}_{\text {2PN }} \hat{\lambda}^{i}
$$

- The recoil of the center-of-mass follows from integrating

$$
\frac{d P_{\mathrm{recoil}}^{i}}{d t}=-\left(\frac{d P^{i}}{d t}\right)^{\mathrm{GW}}
$$

- The recoil velocity $V_{\text {recoil }}^{i}$ can be obtained analytically in the adiabatic approximation (up to the ISCO)

Recoil velocity at the ISCO

Table: Recoil velocity $\left(\mathrm{km} \mathrm{s}^{-1}\right)$ at the ISCO defined by $x_{\mathrm{ISco}}=1 / 6$.

$\eta=\mu / m$	0.05	0.1	0.15	0.2	0.24
Newtonian	2.29	7.92	14.56	18.30	11.78
$\mathrm{~N}+1$ PN	0.27	0.77	1.16	1.12	0.55
$\mathrm{~N}+1 \mathrm{PN}+1.5 \mathrm{PN}$ (tail)	2.87	9.80	17.74	21.96	13.97
$\mathrm{~N}+1 \mathrm{PN}+1.5 \mathrm{PN}+2 \mathrm{PN}$	2.73	9.51	17.57	22.22	14.38

Estimate of the recoil accumulated during the plunge

We make a number of simplifying assumptions
(1) The plunge is approximated as that of a test particle of mass μ moving on a geodesic of the Schwarzschild metric of a BH of mass m
(2) The 2PN linear momentum flux is integrated on that orbit $(y \equiv m / r)$

$$
\Delta V_{\text {plunge }}^{i}=L \int_{\text {ISCO }}^{\text {horizon }}\left(\frac{1}{m \omega} \frac{d P^{i}}{d t}\right) \frac{d y}{\sqrt{E^{2}-(1-2 y)\left(1+L^{2} y^{2}\right)}}
$$

E and L are the constant energy and angular momentum of the Schwarzschild plunging orbit

Matching to the circular orbit at the ISCO

(1) We evolve a circular orbit at the ISCO (where $x=1 / 6$) piecewise to a new orbit using energy and angular momentum balance equations

$$
\begin{aligned}
\frac{d E}{d t} & =-\frac{32}{5} \frac{\eta}{m} x_{\text {ISCO }}^{5} \\
\frac{d L}{d t} & =\frac{1}{\omega_{\mathrm{ISCO}}} \frac{d E}{d t}
\end{aligned}
$$

(2) We discretize these relations around the ISCO values over a fraction of orbital period αP (where $0<\alpha<1$)

$$
\begin{aligned}
E & =E_{\mathrm{ISCO}}-\frac{64 \pi}{5} \eta \alpha x_{\mathrm{ISCO}}^{7 / 2} \\
L & =L_{\mathrm{ISCO}}-\frac{64 \pi}{5} \eta \alpha x_{\mathrm{ISCO}}^{2}
\end{aligned}
$$

(3) We check that the results are insensitive to the value of α below 0.1

Estimation of the recoil up to coalescence at $r=2 m$

[Blanchet, Qusailah \& Will 2005]

Brownsville group [Campanelli \& Lousto 2005]

For the mass ratio $\eta=0.24$ corresponding to $m_{2} / m_{1}=0.66$ the final kick is around $\sim 200 \mathrm{~km} / \mathrm{s}$ but with large error bars

Goddard oroup [Baker, Centrella, Choi, Koppitz, van Meter \& Miller 2006]

$\Longleftarrow 2 \mathrm{PN}$ peak

For the mass ratio $\eta=0.24$ (corresponding to $m_{2} / m_{1}=0.66$)

- Kick at the maximum is $\sim 170 \mathrm{~km} / \mathrm{s}$
- Final kick is $\sim 105 \mathrm{~km} / \mathrm{s}$

We note that the kick at the maximum is in rather good agreement with the 2PN calculation for this mass ratio (namely $\sim 160 \mathrm{~km} / \mathrm{s}$)

Jena group [Gonzalez, Sperhake, Bruegmann, Hannam \& Husa 2006]

For the mass ratio $\eta=0.195\left(m_{2} / m_{1}=0.36\right)$

- Kick at the maximum is $\sim 250 \mathrm{~km} / \mathrm{s}$
- Final kick is $\sim 175 \mathrm{~km} / \mathrm{s}$

Again the kick at the maximum is in good agreement with the 2PN calculation for this mass ratio (namely $\sim 250 \mathrm{~km} / \mathrm{s}$)

Summary of comparisons

$$
\eta=0.24 \quad q=0.66
$$

Favata et al (2004)
Brownsville (2005)
BQW (2005)
DG (2006)
Goddard (2006)
Jena (2006)

$$
\eta=0.2 \quad q=0.36
$$

Favata et al (2004)
Brownsville (2005)
BQW (2005)
DG (2006)
Goddard (2006)
Jena (2006)

Conclusions

- The gravitational recoil is likely to have important astrophysical consequences in models for massive BH formation involving successive mergers from smaller BH seeds
- The computation of the recoil at 2PN order gives a maximal contribution of $22 \mathrm{~km} / \mathrm{s}$ up to the ISCO (probably very accurate)
- For a mass ratio of 0.36 the recoil up to the BH coalescence at $r=2 m$ is estimated at $\sim 250 \mathrm{~km} / \mathrm{s}$ using some approximation in the plunge phase
- Recent progresses in numerical relativity confirm this estimate but show a subsequent decrease of the recoil presumably due to the ring-down phase to the value $\sim 175 \mathrm{~km} / \mathrm{s}$
- The braking of the recoil velocity in the ring-down phase should be better understood theoretically

