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Digest on the history of gravitational recoil

1 General formalisms

Near-zone computation of recoil in linearized gravity [Peres 1958]

Flux computations of recoil as interaction between quadrupole and octupole
moments [Bonnor & Rotenberg 1961, Papapetrou 1971]

General multipole expansion (∀ ` ≥ 2) of linear momentum flux [Thorne 1080]

Radiation-reaction computation of recoil and linear momentum balance
equation [Blanchet 1996]

2 Core collapse to BH

Vrecoil . 300km/s (PN calculation) [Bekenstein 1973]

Perturbation of Oppenheimer-Snyder collapse to BH [Moncrief 1979]

3 Compact binary systems

Recoil for point-mass binaries in Newtonian approximation [Fitchett 1983]

Recoil for particle around Kerr BH (perturbation theory) [Fitchett & Detweiler 1984]

Particle falling on symmetric axis of Kerr [Nakamura & Haugan 1983]

1PN calculation to the recoil from point-mass binaries [Wiseman 1992]

Contributions of spins (PN calculation) [Kidder 1995]
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Recent calculations in the case of compact binaries

1 Analytical or semi-analytical

Perturbation calculation (µ � M) of recoil during final plunge of two BH
[Favata, Hughes & Holz 2004]

2PN calculation and estimate of the contribution of the plunge phase [Blanchet,

Qusailah & Will 2005] (this work)
Application of the effective-one-body (EOB) approach [Damour & Gopakumar 2006]

2 Numerical

Perturbation/full numerical (Lazarus code) [Campanelli & Lousto 2004]

Binary BH grand challenge [Baker, Centrella, Choi, Koppitz, van Meter & Miller 2006]

Binary BH grand challenge [Gonzalez, Sperhake, Bruegmann, Hannam & Husa 2006]

Close limit approximation [Sopuerta, Yunes & Laguna 2006]
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Flux of linear momentum

1 Use stress-energy tensor of GWs

TGW
µν =

1

32π
〈∂µhTT

ij ∂νhTT
ij 〉

2 Derive the linear momentum loss as surface integral at infinity(
dP i

dt

)GW

= −r2

∫
dΩ ni TGW

00

General expression in terms of radiative moments UL and VL [Thorne 1980]
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Note that the multipolar order (`) scales with the PN order (c−1)
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Linear momentum flux at Newtonian order

The radiative moments UL, VL reduce to the source multipole moments

UL = I
(`)
L +O

(
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c3

)
VL = J

(`)
L +O

(
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c3

)
The source moments IL, JL take on their usual Newtonian expressions

IL =

∫
d3x ρ x̂L +O

(
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c2

)
JL = εkl〈i`

∫
d3x ρ vk x̂L−1〉l +O
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)
The “Newtonian” linear momentum flux takes the expression
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corresponds to a 3.5PN radiation reaction effect
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Luc Blanchet (GRεCO) Gravitational recoil From geometry to numerics 5 / 19



Radiation-reaction calculation of the recoil

To 3.5PN order the radiation reaction force is electromagnetic-like with both
scalar Vreac and vectorial Ai

reac potentials [Blanchet & Damour 1984]

In a certain gauge the radiation reaction potentials are [Blanchet 1997]

Vreac = − 1

5c5
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The total recoil force (integrated over the source) is

F i
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agrees with the Newtonian flux calculation
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Gravitational recoil of BH binaries (Newtonian order)

The linear momentum ejection is in the direction of the lighter mass’ velocity

v
2

m
1

m
2

smaller mass    

Vrecoil

motion
center−of−mass

v
1

larger mass    
momentum
ejection

In the Newtonian approximation [with f(η) ≡ η2
√

1− 4η]

Vrecoil = 20 km/s

(
6M

r

)4
f(η)

fmax

= 1500 km/s

(
2M

r

)4
f(η)

fmax
[Fitchett 1983]

Very interesting result which shows the astrophysical relevance of GW recoil but
illustrates the fact that the recoil is mainly generated in the strong field region
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Linear momentum flux to 2PN order

1 We need to include higher-order radiative moments(
dP i

dt

)GW

∼ 1
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2 To 2PN order the tail contributions are
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Application to compact binaries in circular orbits

All the required source multipole moments in the case of compact binaries on
circular orbits are known [Blanchet, Iyer & Joguet 2002, Arun, Blanchet, Iyer & Qusailah 2004]
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where η ≡ µ/m (mass ratio) and γ ≡ m/r (PN parameter)
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Result for the 2PN linear momentum [Blanchet, Qusailah & Will 2005]
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The recoil of the center-of-mass follows from integrating

dP i
recoil

dt
= −

(
dP i

dt

)GW

The recoil velocity V i
recoil can be obtained analytically in the adiabatic

approximation (up to the ISCO)
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Recoil velocity at the ISCO

Table: Recoil velocity (km s−1) at the ISCO defined by xISCO = 1/6.

η = µ/m 0.05 0.1 0.15 0.2 0.24

Newtonian 2.29 7.92 14.56 18.30 11.78
N + 1PN 0.27 0.77 1.16 1.12 0.55
N + 1PN + 1.5PN (tail) 2.87 9.80 17.74 21.96 13.97
N + 1PN + 1.5PN + 2PN 2.73 9.51 17.57 22.22 14.38
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Estimate of the recoil accumulated during the plunge

We make a number of simplifying assumptions

1 The plunge is approximated as that of a test particle of mass µ moving on a
geodesic of the Schwarzschild metric of a BH of mass m

2 The 2PN linear momentum flux is integrated on that orbit (y ≡ m/r)

∆V i
plunge = L

∫ horizon

ISCO

(
1

m ω

dP i

dt

)
dy√

E2 − (1− 2y)(1 + L2 y2)

M

plunging geodesic
of Schwarzschild

ISCO 

E and L are the constant energy and
angular momentum of the Schwarzschild
plunging orbit
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Matching to the circular orbit at the ISCO

1 We evolve a circular orbit at the ISCO (where x = 1/6) piecewise to a new
orbit using energy and angular momentum balance equations

dE

dt
= −32

5

η

m
x5

ISCO

dL

dt
=

1

ωISCO

dE

dt

2 We discretize these relations around the ISCO values over a fraction of orbital
period α P (where 0 < α < 1)

E = EISCO −
64π

5
η α x

7/2
ISCO

L = LISCO −
64π

5
η α x2

ISCO

3 We check that the results are insensitive to the value of α below 0.1
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Estimation of the recoil up to coalescence at r = 2m

[Blanchet, Qusailah & Will 2005]
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Brownsville group [Campanelli & Lousto 2005]

For the mass ratio η = 0.24 corresponding to m2/m1 = 0.66 the final kick is
around ∼ 200 km/s but with large error bars
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Goddard group [Baker, Centrella, Choi, Koppitz, van Meter & Miller 2006]

⇐= 2PN peak

For the mass ratio η = 0.24 (corresponding to m2/m1 = 0.66)

Kick at the maximum is ∼ 170 km/s

Final kick is ∼ 105 km/s

We note that the kick at the maximum is in rather good agreement with the 2PN
calculation for this mass ratio (namely ∼ 160 km/s)
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Jena group [Gonzalez, Sperhake, Bruegmann, Hannam & Husa 2006]
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For the mass ratio η = 0.195 (m2/m1 = 0.36)

Kick at the maximum is ∼ 250 km/s

Final kick is ∼ 175 km/s

Again the kick at the maximum is in good agreement with the 2PN calculation for
this mass ratio (namely ∼ 250 km/s)
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Summary of comparisons
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Conclusions

The gravitational recoil is likely to have important astrophysical consequences
in models for massive BH formation involving successive mergers from
smaller BH seeds

The computation of the recoil at 2PN order gives a maximal contribution of
22 km/s up to the ISCO (probably very accurate)

For a mass ratio of 0.36 the recoil up to the BH coalescence at r = 2m is
estimated at ∼ 250 km/s using some approximation in the plunge phase

Recent progresses in numerical relativity confirm this estimate but show a
subsequent decrease of the recoil presumably due to the ring-down phase to
the value ∼ 175 km/s

The braking of the recoil velocity in the ring-down phase should be better
understood theoretically
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