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Stability of solutions of the Einstein equations

Solutions of the Einstein-VVacuum equations tending to
the Minkowski spacetime at infinity

Talk:

e Setting of the problem

e Questions - Solutions

e Solution by D. Christodoulou and S. Klainerman in '"The
global nonlinear stability of the Minkowski space’

e Solution with more general initial data (B)

e Structures and ideas used in the proof



Solutions of the Einstein-Vacuum (EV) equations:

Rn = 0. (1)

Spacetimes (M, g), where M is a four-dimensional, oriented,
differentiable manifold and ¢ is a Lorentzian metric obeying

(1).

Is there any non-trivial, asymptotically flat initial data
whose maximal development is complete?



Works by many authors:

Y. Choquet-Bruhat, R. Geroch, R. Penrose, S. Hawking,
D. Christodoulou, S. Klainerman, H. Lindblad,

I. Rodnianski, F. Nicold, H. Friedrich

and more.

e Y. Choquet-Bruhat (1952):
"Théoreme d’existence pour certain systemes
d’equations aux dérivées partielles nonlinéaires’:

- Cauchy problem for the Einstein equations,

- local in time, existence and uniqueness of solutions,

- reducing the Einstein equations to wave equations, intro-
ducing harmonic (or wave) coordinates.

Choquet-Bruhat proved the well-posedeness of the local Cauchy
problem in these coordinates.

e Y. Choquet-Bruhat and R. Geroch, stating the exis-
tence of a unique maximal future development for each

given initial data set.

= Question: Is this maximal development complete?



e R. Penrose
gave the answer in his incompleteness theorem:

Consider initial data, where the initial Cauchy hypersurface
H is non-compact and complete. If H contains a closed
trapped surface S, the boundary of a compact domain in
H, then the corresponding maximal future development
IS incomplete.

Closed trapped surface S: An infinitesimal displacement of
S in M towards the future along the outgoing null geodesic
congruence results in a pointwise decrease of the area ele-

ment.

D. Christodoulou

A closed trapped surface can form in the evolution,
starting from initial data not containing any such sur-
faces.

e Theorem of Penrose and its extensions by S. Hawking
and R. Penrose

= Question, formulated at the beginning.



Answer

Joint work of D. Christodoulou and S. Klainerman
([CK], 1993),
"The global nonlinear stability of the Minkowski space’.

Every asymptotically flat initial data which is globally
close to the trivial data gives rise to a solution which is
a complete spacetime tending to the Minkowski space-
time at infinity along any geodesic.

e NoO additional restriction on the data.
e NO use of a preferred system of coordinates

e Relied on the invariant formulation of the E-V equa-

tions.

e Precise description of the asymptotic behaviour at
null infinity.



H. Lindblad and I. Rodnianski:
'Global existence for the EV equations in wave coordi-
nates’

e Global stability of Minkowski space for the EV equa-
tions in harmonic (wave) coordinate gauge

e for the set of restricted data coinciding with the
Schwarzschild solution in the neighbourhood of space-
like infinity.

e Result contradicts beliefs that wave coordinates are 'un-
stable in the large’ and provides an alternative approach
to the stability problem

e Result is less precise as far as the asymptotic behaviour
IS concerned

e Focus on giving a solution in a physically interesting
wave coordinate gauge



H. Lindblad and I. Rodnianski:
"The global stability of Minkowski space-time in
harmonic gauge’

e Stability for EV scalar field equations

e Less decay of 'tail of the metric’



New Result [B]

More general asymptotically flat initial data with

less decay and

one less derivative than in [CK]

yielding a solution which is a complete spacetime, tending

to the Minkowski spacetime at infinity along any geodesic.

= Have finite energy

R. Bartnik’'s formulation of the positive mass theorem

applies.



R. Bartnik
Positive mass theorem:

If we are given an asymptotically flat, connected, complete,
3-dimensional manifold (H, g) with
| 9i5 — 6ijllap 1 < e

and integrable scalar curvature R > O.

Then the mass
mapym > 0O

and mapy = O if and only if (H,g) is globally flat.



Initial data set: A triplet (H, g, k) with (H, g) being a three-
dimensional complete Riemannian manifold and k a two-
covariant symmetric tensorfield on H, satisfying the con-
straint equations:

Vikij—vj'trk = 0
R— |k|” + @rk)? = 0.



Evolution equations:
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Constraint equations:

Vikij — Vj trk = O
R + (trk)? — |k|?
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A general asymptotically flat initial data set (H,g,k):
An initial data set such that

e the complement of a compact set in H is diffeomorphic to
the complement of a closed ball in R3

e and there exists a coordinate system (z!, 22, 23) in this

complement relative to which the metric components
95— 9
ki — 0

sufficiently rapidly as r = (327, (¢")?): — oo.

In [CK], consider the following

strongly asymptotically flat initial data set:

An initial data set (H,g,k), where g and k are sufficiently
smooth and there exists a coordinate system (2!, 22, 23) de-

fined in a neighbourhood of infinity such that,

as r = (31, (¢)?)F — oo
_ 2M _3
g; = (1 4+ T) dij + oa (r72) (2)
kij = o3 (r2) , (3)

where M denotes the mass.



The strongly asymptotically flat initial data set has to satisfy
a certain smallness assumption.

They introduce

Q(x(0y,b) = sup (b2 (d5 + v°)° | Ric|* )

H
3
+ b—3 ( / Z (dg + b2)l—|—1 |vlk |2
H

1=0
1
+ [ D dg + )T VB ) (4)
H =g
do(x) = d(x(),z) : the Riemannian geodesic distance be-
tween the point x and a given point T () ON H.
b . a positive constant.
V! . the l-covariant derivatives.
B (Bach tensor): the following symmetric, traceless 2-tensor

1
Bij = ¢" V4 (Ryp — 7 Jib R) .

Global Smallness Assumption:
A strongly asymptotically flat initial data set is said to satisfy
the global smallness assumption if the metric g is complete

and there exists a sufficiently small positive € such that

inf Q(x(o),b) < €. (5)

x(o)GH,sz



One version of the main theorem in [CK]:

Theorem 1. Any strongly asymptotically flat, maximal, ini-
tial data set that satisfies the global smallness assumption
(5), leads to a unique, globally hyperbolic, smooth and
geodesically complete solution of the E-V equations foli-
ated by a normal, maximal time foliation. This development
is globally asymptotically flat.



Proof for more general initial data in the following sense

[BI]:

We consider an asymptotically flat initial data set (Ho, g, k)
for which there exists a coordinate system (z!,z?,23) in a
neighbourhood of infinity such that with

r= (0 (9)?): — oo, it is:

gi; = 0ij + o3 (r2) (6)
kij = o2 (r2) . (7)



Global smallness assumption:

Q(a,0) = (/ (1K + (@+d) |k
H,
(@B VP ) dyg
+ ( (a®+d3) | Ric|?

Hy
b @ BR TR R ) dug )
< €. (8)

a . positive scale factor.

Main Theorem [B]:

Theorem 2. Any asymptotically flat, maximal initial data
set satisfying the global smallness assumption, leads to a
unique, dglobally hyperbolic, smooth and geodesically
complete solution of the EV-equations, foliated by the
level sets of a maximal time function. This development is
globally asymptotically flat.



Invariant formulation of the E-V equations
No use of a preferred coordinate system
Asymptotic behaviour given in a precise way
Appropriate foliation of the spacetime

Bianchi identity for the Weyl tensor W, having all the
symmetry properties of the curvature tensor, in addition

IS traceless and satisfies the Bianchi equations

DeWagns = 0.

Bel-Robinson tensor:

Associate to a Weyl field a tensorial quadratic form:
e a 4-covariant tensorfield

e being fully symmetric and trace-free.

1

Qopys = >

It satisfies the following positivity condition:
Q (X17 X27 X37 X4) Z 0

X1, X2, X3, X4 future-directed timelike vectors. For W
satisfying the Bianchi equations:

D* Qaﬁfyé = 0.



e A deneral spacetime has no symmetries, that is, the
conformal isometry group is trivial.

= Use Minkowski as background.

e Spacetime — Minkowski as t — oco. MinkowskKi
having a large conformal isometry group. Define in
the limit an action of a subgroup.

e Extend this action backwards in time up to the
initial hypersurface — obtain an action of the said sub-
group globally.

e Apply Noether’s principle (in a generalized way)
= Background vacuum solution

e Solution constructed as the corresponding develop-
ment of the initial data

Constructing a set of quantities whose growth can be
controlled in terms of the quantities themselves.



Main structures of the spacetime used in the proof

Comparison argument with the Minkowski spacetime:

e Canonical spacelike foliation
e Null structure
e Conformal group structure

The (¢t,u) foliations of the spacetime define a codimension
2 foliation by 2-surfaces

St)u — Ht M CU7 (9)

the intersection between H; (foliation by t) and a wu-null-
hypersurface C, (foliation by u).

Foliation by time function ¢ with lapse function

b (t,x)

(- (Dt,Dt))~=

with D denoting the covariant differentiation on the space-
time M, and second fundamental form k.

Foliation by optical function u, a solution of the Eikonal

equation:
of ou Ou

— = 0.
ox® OxP
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Crucial Foliation:

The asymptotic behaviour of the curvature tensor R and
the Hessian of ¢t and w can only be fully described by de-
composing them into components tangent to S;,.

Achieve this

= Dby introducing

null pairs consisting of 2 future-directed null vectors e4 and
ez orthogonal to S;, with e4 tangent to C, and

<e4,e3> = — 2. (10)

A null pair together with an orthonormal frame e, ex on S;,,
forms a null frame.

The null decomposition of a tensor relative to a null frame
e4, €3, €2, e1 IS obtained by taking contractions with the vec-

torfields eq, e3.

Also define



Null decomposition of the Riemann curvature tensor of
an E-V spacetime:

Rasps = auas (11)
Razza = 2 (a4 (12)
Raszqs = 4p (13)
"R3a3a = 40 (14)
Rasza = 2 B4 (15)
Raspa = oaaB (16)

with

S-tangent, symmetric, traceless tensors
S-tangent 1-forms
scalars

D @
SR



Obtained the following properties for the null components
of the curvature tensor on each hypersurface H;:

/73|g|2 + [ 2187
t Ht

+ [ 1P+ [ 2loP
H, H,

+ [ 2B+ | el

Ht Ht
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+ / first derivatives "

Components decaying like

a = O (@17
B o= 007
p? 0-7 a? /8 — o (T_g)



Whereas in [CK] the null components have the
decay properties:
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[B]:

Control

One derivative of curvature (Ricci) in H. For Ric in-
cluding corresponding weights according to (8):

Ric € WY2(H)

Trace Lemma gives

= @Gauss curvature in the leaves of the u-foliation S:
K e L*S)

[CK]:
Control
Two derivatives of curvature in L?(H). For Ric including

weights as in (4):
Ric € L*°(H)
= also K € L(S)



We also control
Two derivatives of the second fundamental form k
= by Sobolev inequalities

k € L*(H)

(components of k) € L>(S)



Main Steps of the Proof

One Large Bootstrap - More Small Bootstraps

1. Estimate an appropriate quantity Q1(W),
integral over H; involving Bel-Robinson tensor ) of Lie
derivative of W.
At time t: can be calculated by its value at ¢t = 0 and

an integral from O to ¢, both controlled.

2. Weyl tensor W verifying the Bianchi equations, con-
trolled through @Q1(W) by a comparison argument.

3. Geometric quantities determined from curvature as-
sumptions using elliptic estimates, evolution equations,

Sobolev inequalities, etc.



Q1(W) is given as follows:

Qq1(W) = Qo + @1

with Qo and @1 being the subsequent integrals,
and for K =K+ T,

Ql(t) — . Q (ZS'W) ([_(7T7 T7 T)
+ Q(ETW) (KakaTaT)

H,

Obtain the estimates of the angular derivatives of our
curvature components directly from the Bianchi equa-
tions.

In the work [CK]: introduced rotational vectorfields to obtain

the corresponding angular derivatives.

Here, no rotational vectorfields are needed.



Bootstrapping

Local = Global

e Bootstrap assumptions: Initial assumptions on the
main geometric quantities of the 2 foliations, i.e. {H:}
and {C,}.

e Local existence theorem

— local existence

e Bootstrap argument together with evolution equa-

tions

— global existence



To Point 3 - Estimating Geometric Quantities

Fundamental form x of S relative to C:

x(X,Y) = g(DxL,Y)

for any pair of vectors X,Y € T,S and L generating vector-
field of C.

Estimating x from the propagation equation

otrx
0s
and the elliptic system on each section S of C

1
+ 5 )+ [xP=0 (17)

1
where

fa involves curvature.



Assuming estimates for the spacetime curvature
on the right hand side of (18)

To obtain estimates for the
quantities controlling the geometry of C' as described by
its foliation {Ss}.

Closing the bootstrap arguments.



Energy and Linear Momentum

Energy and linear momentum
are

well-defined and conserved.

Definitions (ADM) in a hypersurface H of the spacetime:

Let S, = {|z| = r} be the coordinate sphere of radius r
and dS; the Euclidean oriented area element of S,.

e [otal Energy

_7=|I—>r]<;]o/ Z(azgm - 8j§ll) dSJ )

e Linear Momentum

: 1
P = —5 lim (klj — §z~j tT’k) de ,



Open Question:

What is the sharp critera for non-trivial asymptotically
flat initial data sets to give rise to a maximal develop-
ment that is complete?



