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Stability of solutions of the Einstein equations

Solutions of the Einstein-Vacuum equations tending to

the Minkowski spacetime at infinity

Talk:

• Setting of the problem

• Questions - Solutions

• Solution by D. Christodoulou and S. Klainerman in ’The

global nonlinear stability of the Minkowski space’

• Solution with more general initial data (B)

• Structures and ideas used in the proof



Solutions of the Einstein-Vacuum (EV) equations:

Rµν = 0 . (1)

Spacetimes (M, g), where M is a four-dimensional, oriented,

differentiable manifold and g is a Lorentzian metric obeying

(1).

Is there any non-trivial, asymptotically flat initial data

whose maximal development is complete?



Works by many authors:

Y. Choquet-Bruhat, R. Geroch, R. Penrose, S. Hawking,

D. Christodoulou, S. Klainerman, H. Lindblad,

I. Rodnianski, F. Nicolò, H. Friedrich

and more.

• Y. Choquet-Bruhat (1952):

’Théorème d’existence pour certain systèmes

d’equations aux dérivées partielles nonlinéaires’:

- Cauchy problem for the Einstein equations,

- local in time, existence and uniqueness of solutions,

- reducing the Einstein equations to wave equations, intro-

ducing harmonic (or wave) coordinates.

Choquet-Bruhat proved the well-posedeness of the local Cauchy

problem in these coordinates.

• Y. Choquet-Bruhat and R. Geroch, stating the exis-

tence of a unique maximal future development for each

given initial data set.

⇒ Question: Is this maximal development complete?



• R. Penrose

gave the answer in his incompleteness theorem:

Consider initial data, where the initial Cauchy hypersurface

H is non-compact and complete. If H contains a closed

trapped surface S, the boundary of a compact domain in

H, then the corresponding maximal future development

is incomplete.

Closed trapped surface S: An infinitesimal displacement of

S in M towards the future along the outgoing null geodesic

congruence results in a pointwise decrease of the area ele-

ment.

D. Christodoulou

A closed trapped surface can form in the evolution,

starting from initial data not containing any such sur-

faces.

• Theorem of Penrose and its extensions by S. Hawking

and R. Penrose

⇒ Question, formulated at the beginning.



Answer

Joint work of D. Christodoulou and S. Klainerman

([CK], 1993),

’The global nonlinear stability of the Minkowski space’.

Every asymptotically flat initial data which is globally

close to the trivial data gives rise to a solution which is

a complete spacetime tending to the Minkowski space-

time at infinity along any geodesic.

• No additional restriction on the data.

• No use of a preferred system of coordinates

• Relied on the invariant formulation of the E-V equa-

tions.

• Precise description of the asymptotic behaviour at

null infinity.



H. Lindblad and I. Rodnianski:

’Global existence for the EV equations in wave coordi-

nates’

• Global stability of Minkowski space for the EV equa-

tions in harmonic (wave) coordinate gauge

• for the set of restricted data coinciding with the

Schwarzschild solution in the neighbourhood of space-

like infinity.

• Result contradicts beliefs that wave coordinates are ’un-

stable in the large’ and provides an alternative approach

to the stability problem

• Result is less precise as far as the asymptotic behaviour

is concerned

• Focus on giving a solution in a physically interesting

wave coordinate gauge



H. Lindblad and I. Rodnianski:

’The global stability of Minkowski space-time in

harmonic gauge’

• Stability for EV scalar field equations

• Less decay of ’tail of the metric’



New Result [B]

More general asymptotically flat initial data with

less decay and

one less derivative than in [CK]

yielding a solution which is a complete spacetime, tending

to the Minkowski spacetime at infinity along any geodesic.

⇒ Have finite energy

R. Bartnik’s formulation of the positive mass theorem

applies.



R. Bartnik

Positive mass theorem:

If we are given an asymptotically flat, connected, complete,

3-dimensional manifold (H, g) with

‖ gij − δij ‖2,2,−1

2

≤ ε

and integrable scalar curvature R ≥ 0.

Then the mass

mADM ≥ 0

and mADM = 0 if and only if (H, g) is globally flat.



Initial data set: A triplet (H, ḡ, k) with (H, ḡ) being a three-

dimensional complete Riemannian manifold and k a two-

covariant symmetric tensorfield on H, satisfying the con-

straint equations:

∇i kij − ∇j trk = 0

R − | k |2 + (trk)2 = 0 .



Evolution equations:

∂ḡij

∂t
= 2Φkij

∂kij

∂t
= ∇i∇jΦ − (Rij + kij trk − 2kimkm

j )Φ

Constraint equations:

∇ikij − ∇j trk = 0

R + (trk)2 − |k|2 = 0



A general asymptotically flat initial data set (H, ḡ, k):

An initial data set such that

• the complement of a compact set in H is diffeomorphic to

the complement of a closed ball in R3

• and there exists a coordinate system (x1, x2, x3) in this

complement relative to which the metric components

ḡij → δij

kij → 0

sufficiently rapidly as r = (
∑3

i=1(x
i)2)

1

2 → ∞.

In [CK], consider the following

strongly asymptotically flat initial data set:

An initial data set (H, ḡ, k), where ḡ and k are sufficiently

smooth and there exists a coordinate system (x1, x2, x3) de-

fined in a neighbourhood of infinity such that,

as r = (
∑3

i=1(x
i)2)

1

2 → ∞:

ḡij = (1 +
2M

r
) δij + o4 (r−

3

2) (2)

kij = o3 (r−
5

2) , (3)

where M denotes the mass.



The strongly asymptotically flat initial data set has to satisfy

a certain smallness assumption.

They introduce

Q(x(0), b) = sup
H

(

b−2 (d2
0 + b2)3 | Ric |2

)

+ b−3
(

∫

H

3
∑

l=0

(d2
0 + b2)l+1 | ∇lk |2

+

∫

H

1
∑

l=0

(d2
0 + b2)l+3 | ∇lB |2

)

(4)

d0(x) = d(x(0), x) : the Riemannian geodesic distance be-

tween the point x and a given point x(0) on H.

b : a positive constant.

∇l : the l-covariant derivatives.

B (Bach tensor): the following symmetric, traceless 2-tensor

Bij = ε ab
j ∇a (Rib −

1

4
gib R) .

Global Smallness Assumption:

A strongly asymptotically flat initial data set is said to satisfy

the global smallness assumption if the metric ḡ is complete

and there exists a sufficiently small positive ε such that

inf
x(0)∈H,b≥0

Q(x(0), b) < ε . (5)



One version of the main theorem in [CK]:

Theorem 1. Any strongly asymptotically flat, maximal, ini-

tial data set that satisfies the global smallness assumption

(5), leads to a unique, globally hyperbolic, smooth and

geodesically complete solution of the E-V equations foli-

ated by a normal, maximal time foliation. This development

is globally asymptotically flat.



Proof for more general initial data in the following sense

[B]:

We consider an asymptotically flat initial data set (H0, ḡ, k)

for which there exists a coordinate system (x1, x2, x3) in a

neighbourhood of infinity such that with

r = (
∑3

i=1(x
i)2)

1

2 → ∞, it is:

ḡij = δij + o3 (r−
1

2) (6)

kij = o2 (r−
3

2) . (7)



Global smallness assumption:

Q(a,0) = a−1
(

∫

H0

(

| k |2 + (a2 + d2
0) | ∇k |2

+ (a2 + d2
0)

2 | ∇2k |2
)

dµḡ

+

∫

H0

(

(a2 + d2
0) | Ric |2

+ (a2 + d2
0)

2 | ∇Ric |2
)

dµḡ

)

< ε . (8)

a : positive scale factor.

Main Theorem [B]:

Theorem 2. Any asymptotically flat, maximal initial data

set satisfying the global smallness assumption, leads to a

unique, globally hyperbolic, smooth and geodesically

complete solution of the EV-equations, foliated by the

level sets of a maximal time function. This development is

globally asymptotically flat.



• Invariant formulation of the E-V equations

• No use of a preferred coordinate system

• Asymptotic behaviour given in a precise way

• Appropriate foliation of the spacetime

• Bianchi identity for the Weyl tensor W, having all the

symmetry properties of the curvature tensor, in addition

is traceless and satisfies the Bianchi equations

D[εWαβ]γδ = 0 .

• Bel-Robinson tensor:

Associate to a Weyl field a tensorial quadratic form:

• a 4-covariant tensorfield

• being fully symmetric and trace-free.

Qαβγδ =
1

2
(Wαργσ W

ρ σ
β δ + ∗Wαργσ

∗W
ρ σ

β δ ) .

It satisfies the following positivity condition:

Q (X1, X2, X3, X4) ≥ 0

X1, X2, X3, X4 future-directed timelike vectors. For W

satisfying the Bianchi equations:

Dα Qαβγδ = 0 .



• A general spacetime has no symmetries, that is, the

conformal isometry group is trivial.

⇒ Use Minkowski as background.

• Spacetime → Minkowski as t → ∞. Minkowski

having a large conformal isometry group. Define in

the limit an action of a subgroup.

• Extend this action backwards in time up to the

initial hypersurface → obtain an action of the said sub-

group globally.

• Apply Noether’s principle (in a generalized way)

⇒ Background vacuum solution

• Solution constructed as the corresponding develop-

ment of the initial data

Constructing a set of quantities whose growth can be

controlled in terms of the quantities themselves.



Main structures of the spacetime used in the proof

Comparison argument with the Minkowski spacetime:

• Canonical spacelike foliation

• Null structure

• Conformal group structure

The (t, u) foliations of the spacetime define a codimension

2 foliation by 2-surfaces

St,u = Ht ∩ Cu , (9)

the intersection between Ht (foliation by t) and a u-null-

hypersurface Cu (foliation by u).

Foliation by time function t with lapse function

Φ (t, x) = (−
〈

Dt, Dt
〉

)−
1

2

with D denoting the covariant differentiation on the space-

time M , and second fundamental form k.

Foliation by optical function u, a solution of the Eikonal

equation:

gαβ ∂u

∂xα

∂u

∂xβ
= 0 .



Crucial Foliation:

The asymptotic behaviour of the curvature tensor R and

the Hessian of t and u can only be fully described by de-

composing them into components tangent to St,u.

Achieve this

⇒ by introducing

null pairs consisting of 2 future-directed null vectors e4 and

e3 orthogonal to St,u with e4 tangent to Cu and

〈

e4, e3

〉

= − 2 . (10)

A null pair together with an orthonormal frame e1, e2 on St,u

forms a null frame.

The null decomposition of a tensor relative to a null frame

e4, e3, e2, e1 is obtained by taking contractions with the vec-

torfields e4, e3.

Also define

τ2
− := 1 + u2 .



Null decomposition of the Riemann curvature tensor of

an E-V spacetime:

RA3B3 = αAB (11)

RA334 = 2 βA (12)

R3434 = 4 ρ (13)

∗R3434 = 4 σ (14)

RA434 = 2 βA (15)

RA4B4 = αAB (16)

with

α, α : S-tangent, symmetric, traceless tensors
β, β : S-tangent 1-forms
ρ, σ : scalars .



Obtained the following properties for the null components

of the curvature tensor on each hypersurface Ht:

∫

Ht

τ2
− | α |2 +

∫

Ht

r2 | β |2

+

∫

Ht

r2 | ρ |2 +

∫

Ht

r2 | σ |2

+

∫

Ht

r2 | β |2 +

∫

Ht

r2 | α |2

+ ”

∫

Ht

first derivatives ” ≤ ε

Components decaying like

α = O (r−1 τ
−3

2

− )

β = O (r−2 τ
−1

2

− )

ρ, σ, α, β = o (r−
5

2)



Whereas in [CK] the null components have the

decay properties:

α = O (r−1 τ
−5

2

− )

β = O (r−2 τ
−3

2

− )

ρ = O (r−3)

σ = O (r−3 τ
−1

2

− )

α, β = o (r−
7

2)



[B]:

Control

One derivative of curvature (Ricci) in H. For Ric in-

cluding corresponding weights according to (8):

Ric ∈ W1,2(H)

Trace Lemma gives

⇒ Gauss curvature in the leaves of the u-foliation S:

K ∈ L4(S)

[CK]:

Control

Two derivatives of curvature in L2(H). For Ric including

weights as in (4):

Ric ∈ L∞(H)

⇒ also K ∈ L∞(S)



We also control

Two derivatives of the second fundamental form k

⇒ by Sobolev inequalities

k ∈ L∞(H)

⇒

(components of k) ∈ L∞(S)



Main Steps of the Proof

One Large Bootstrap - More Small Bootstraps

1. Estimate an appropriate quantity Q1(W),

integral over Ht involving Bel-Robinson tensor Q of Lie

derivative of W .

At time t: can be calculated by its value at t = 0 and

an integral from 0 to t, both controlled.

2. Weyl tensor W verifying the Bianchi equations, con-

trolled through Q1(W) by a comparison argument.

3. Geometric quantities determined from curvature as-

sumptions using elliptic estimates, evolution equations,

Sobolev inequalities, etc.



Q1(W) is given as follows:

Q1(W) = Q0 + Q1

with Q0 and Q1 being the subsequent integrals,

and for K̄ = K + T ,

Q0(t) =

∫

Ht

Q (W) (K̄, T, T, T)

Q1(t) =

∫

Ht

Q (L̂SW) (K̄, T, T, T)

+

∫

Ht

Q (L̂TW) (K̄, K̄, T, T) .

Obtain the estimates of the angular derivatives of our

curvature components directly from the Bianchi equa-

tions.

In the work [CK]: introduced rotational vectorfields to obtain

the corresponding angular derivatives.

Here, no rotational vectorfields are needed.



Bootstrapping

Local ⇒ Global

• Bootstrap assumptions: Initial assumptions on the

main geometric quantities of the 2 foliations, i.e. {Ht}

and {Cu}.

• Local existence theorem

→ local existence

• Bootstrap argument together with evolution equa-

tions

→ global existence



To Point 3 - Estimating Geometric Quantities

Fundamental form χ of S relative to C:

χ(X, Y ) = g(DXL, Y )

for any pair of vectors X, Y ∈ TpS and L generating vector-

field of C.

Estimating χ from the propagation equation

∂trχ

∂s
+

1

2
(trχ)2 + | χ̂ |2 = 0 (17)

and the elliptic system on each section Ss of C

div χ̂a =
1

2
datrχ + fa (18)

where

fa involves curvature.



Assuming estimates for the spacetime curvature

on the right hand side of (18)

⇒

To obtain estimates for the

quantities controlling the geometry of C as described by

its foliation {Ss}.

Closing the bootstrap arguments.



Energy and Linear Momentum

Energy and linear momentum

are

well-defined and conserved.

Definitions (ADM) in a hypersurface H of the spacetime:

Let Sr = {|x| = r} be the coordinate sphere of radius r

and dSj the Euclidean oriented area element of Sr.

• Total Energy

E =
1

4
lim
r→∞

∫

Sr

∑

i,j

(∂iḡij − ∂jḡii) dSj ,

• Linear Momentum

P i = −
1

2
lim
r→∞

∫

Sr

(kij − ḡij trk) dSj ,



Open Question:

What is the sharp critera for non-trivial asymptotically

flat initial data sets to give rise to a maximal develop-

ment that is complete?


